Câu hỏi:

25/06/2024 1,620 Lưu

Đường thẳng \(12x + 5y = 60\) tạo với hai trục tọa độ một tam giác. Tổng độ dài các đường cao của tam giác đó là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \[A,\,\,B\] lần lượt là giao điểm của đường thẳng đã cho với \[Ox,\,\,Oy.\]

Ta có \(12x + 5y = 60 \Leftrightarrow \frac{x}{5} + \frac{y}{{12}} = 0.\) Do đó \(A\left( {5\,;\,\,0} \right),\,\,B\left( {0\,;\,\,12} \right).\)

Gọi \(H\) là hình chiếu của \(O\) lên AB.

Khi đó \(OH = d\left( {O\,;\,\,AB} \right) = \frac{{\left| {12 \cdot 0 + 5 \cdot 0 - 60} \right|}}{{\sqrt {{{12}^2} + {5^2}} }} = \frac{{60}}{{13}}.\)

Tam giác \[OAB\] là tam giác vuông tại \(O\).

Khi đó, tổng độ dài các đường cao là: \(OA + OB + OH = 5 + 12 + \frac{{60}}{{13}} = \frac{{281}}{{13}}{\rm{.}}\) Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Media VietJack

Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)

Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]

Khi hạ độ cao các điểm ở các điểm  xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]

Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)

Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)

Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP