Câu hỏi:

25/06/2024 3,014 Lưu

Media VietJack

Một cái thùng đựng dầu có thiết diện ngang (mặt trong của thùng) là một đường elip có trục lớn là \(1\;\,{\rm{m,}}\) trục bé \(0,8\;\,{\rm{m,}}\) chiều dài (mặt trong của thùng) bằng \(3\;\,{\rm{m}}\) được đặt sao cho trục bé nắm theo phương thẳng đứng (như hình vẽ). Biết chiều cao của dầu hiện có trong thùng (tính từ đáy thùng đến mặt dầu) là \[0,6{\rm{ }}m.\] Thể tích \[V\] của dầu có trong thùng (kết quả làm tròn đến hàng phần trăm) là

A. \(V = 1,27\;\,{{\rm{m}}^3}.\)     

B. \(V = 1,31\;\,{{\rm{m}}^3}.\)    
C. \(V = 1,19\,\;{{\rm{m}}^3}.\)     
D. \(V = 1,52\,\;{{\rm{m}}^3}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

 

Chọn hệ trục toạ độ như hình vẽ.

Theo đề ta có phương trình của elip là \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1.\)

Gọi \[M,\,\,N\] lần lượt là giao điểm của dầu với elip.

Gọi \({S_1}\) là diện tích của hình elip ta có \({S_1} = \pi ab = \pi  \cdot \frac{1}{2} \cdot \frac{2}{5} = \frac{\pi }{5}.\)

Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi elip và đường thẳng \[MN\]

Theo đề bài chiều cao của dầu hiện có trong thùng (tính từ đáy thùng đến mặt dầu) là \[0,6{\rm{ }}m\] nên ta có phương trình của đường thẳng \[MN\] là \(y = \frac{1}{5}.\)

Mặt khác, từ phương trình \(\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{4}{{25}}}} = 1\), ta có \(y = \frac{4}{5}\sqrt {\frac{1}{4} - {x^2}} .\)

Do đường thẳng \(y = \frac{1}{5}\) cắt elip tại hai đỉnh \[M,\,\,N\] có hoành độ lần lượt là \( - \frac{{\sqrt 3 }}{4}\) và \(\frac{{\sqrt 3 }}{4}\) nên

\({S_2} = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {\frac{4}{5}\sqrt {\frac{1}{4} - {x^2}}  - \frac{1}{5}} \right)} \,{\rm{d}}x = \frac{4}{5}\int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x - \frac{{\sqrt 3 }}{{10}}{\rm{. }}\)

Tính \(I = \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\sqrt {\frac{1}{4} - {x^2}} } \,{\rm{d}}x\). Đặt \(x = \frac{1}{2}\sin t \Rightarrow {\rm{d}}x = \frac{1}{2}\cos t\;{\rm{d}}t.\)

Đổi cận: Khi \(x =  - \frac{{\sqrt 3 }}{4}\) thì \(t =  - \frac{\pi }{3}\); khi \(x = \frac{{\sqrt 3 }}{4}\) thì \(t = \frac{\pi }{3}.\)

\(I = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\frac{1}{2} \cdot \frac{1}{2}{{\cos }^2}t\;{\rm{d}}t}  = \frac{1}{8}\int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\left( {1 + \cos 2t} \right){\rm{d}}t}  = \frac{1}{8}\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right).\)

Do đó \({S_2} = \frac{4}{5} \cdot \frac{1}{8}{\left( {\frac{{2\pi }}{3} + \frac{{\sqrt 3 }}{2}} \right)^3} - \frac{{\sqrt 3 }}{{10}} = \frac{\pi }{{15}} - \frac{{\sqrt 3 }}{{20}}.\)

Thể tích của dầu trong thùng là \(V = \left( {\frac{\pi }{5} - \frac{\pi }{{15}} + \frac{{\sqrt 3 }}{{20}}} \right) \cdot 3 = 1,52\).

Vậy \(V = 1,52\;\,{{\rm{m}}^3}.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016) là \(31 + 29 + 31 + 30 = 121\) (ngày)

Số tiền bỏ ống heo ngày đầu tiên là \({u_1} = 100.\)

Số tiền bỏ ống heo ngày thứ hai là \({u_2} = 100 + 1.100.\)

Số tiền bỏ ống heo ngày thứ ba là \({u_3} = 100 + 2.100.\)

Số tiền bỏ ống heo ngày thứ \(n\) là \({u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right) \cdot 100 = 100n\)

Số tiền bỏ ống heo ngày thứ 121 là \({u_{121}} = 100 \cdot 121 = 12\,\,100\).

Sau 121 ngày thì số tiền An tích luỹ được là tổng của 121 số hạng đầu của cấp số cộng có số hạng đầu \({u_1} = 100\,;\,\,d = 100.\)

Vậy số tiền An tích luỹ được là:

\({S_{121}} = \frac{{121}}{2}\left( {{u_1} + {u_{121}}} \right) = \frac{{121}}{2}\left( {100 + 12\,\,100} \right) = 738\,\,100\) (đồng). Chọn A.

Câu 6

A. 3.                              
B. 4.                              
C. 5.     
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Quyền được hưởng hòa bình, tự do và dân sinh.
B. Quyền tự quyết, quyền đấu tranh và quyền tự do. 
C. Quyền tự do ngôn luận, tự do đi lại, tự do đấu tranh.
D. Quyền tự do, dân chủ, bình đẳng và quyền tự quyết.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP