Câu hỏi:

25/06/2024 344

Cho hình chóp \[S.ABC\] có đáy là tam giác vuông tại \(A,\,\,AB = a,\,\,AC = 2a,\,\,SA\) vuông góc với mặt phẳng đáy và \(SA = 2a.\) Gọi \(G\) là trọng tâm của \(\Delta ABC.\) Khoảng cách giữa hai đường thẳng \[SG\] và \[BC\] bằng

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi \[M\] là trung điểm của \[BC\].

Trong mặt phẳng \(\left( {SAM} \right)\) dựng \(S'M\,{\rm{//}}\,SG.\)

Suy ra \[S'A = \frac{3}{2}SA = 3a\].

Do đó \(d\left( {SG,BC} \right) = d\left( {SG,\,\,\left( {S'BC} \right)} \right) = d\left( {G,\,\,\left( {S'BC} \right)} \right)\)

Vì \(AM = 3GM\) nên \(d\left( {G,\,\,\left( {S'BC} \right)} \right) = \frac{1}{3}d\left( {A,\,\,\left( {S'BC} \right)} \right)\)

Kẻ \(AH \bot BC\); \(AK \bot S'H\) ta có \(BC \bot \left( {S'AH} \right)\); \(AK = d\left( {A,\,\,\left( {S'BC} \right)} \right).\)

Ta có \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} \Rightarrow AH = \frac{{2a}}{{\sqrt 5 }}.\) Suy ra \(\frac{1}{{A{K^2}}} = \frac{1}{{S'{A^2}}} + \frac{1}{{A{H^2}}} \Rightarrow AK = \frac{{6a}}{7}.\)

Do đó \(d\left( {G,\,\,\left( {S'BC} \right)} \right) = \frac{1}{3}AK = \frac{{2a}}{7}.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(G\left( x \right) = 0,035{x^2}\left( {15 - x} \right),\)trong đó \[x\] là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất là

Xem đáp án » 25/06/2024 14,675

Câu 2:

Sinh nhật bạn của An vào ngày 01 tháng năm. An muốn mua một món quà sinh nhật cho bạn nên quyết định bỏ ống heo 100 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 100 đồng. Hỏi đến ngày sinh nhật của bạn, An đã tích lũy được bao nhiêu tiền? (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016).

Xem đáp án » 25/06/2024 11,471

Câu 3:

Tìm số nghiệm nguyên dương \(\left( {x\,;\,\,y} \right)\) của bất phương trình \(\frac{x}{3} + \frac{y}{4} \le 1\)?

Xem đáp án » 25/06/2024 6,799

Câu 4:

Media VietJack

Một chiếc đu quay có bán kính \[75{\rm{ }}m,\] tâm của vòng quay ở độ cao \[90{\rm{ }}m\] (tham khảo hình vẽ). Thời gian quay hết 1 vòng của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét?

Xem đáp án » 25/06/2024 3,733

Câu 5:

Trong không gian với hệ trục tọa độ \[Oxyz,\] điểm \(M\left( {a\,;\,\,b\,;\,\,c} \right)\) thuộc mặt phẳng \((P):x + y + z - 6 = 0\) và cách đều các điểm \(A\left( {1\,;\,\,6\,;\,\,0} \right),\,\,B\left( { - 2\,;\,\,2\,;\,\, - 1} \right),\,\,C\left( {5\,;\,\, - 1\,;\,\,3} \right).\) Tích \[abc\] bằng

Xem đáp án » 25/06/2024 2,731

Câu 6:

Media VietJack

Cho hàm số \(f\left( x \right) = \frac{{2 - ax}}{{bx - c}}\) \(\,\,\left( {a,\,\,b,\,\,c \in \mathbb{R},\,\,b \ne 0} \right)\) có bảng biến thiên như hình vẽ bên. Tổng các số \[{\left( {a + b + c} \right)^2}\] thuộc khoảng nào dưới đây?

Xem đáp án » 25/06/2024 2,688

Câu 7:

Media VietJack

 

Một phần sân trường được định vị bởi các điểm \[A,\,\,B,\,\,C,\,\,D\] như hình vẽ.

Bước đầu chúng được lấy "thăng bằng" đế có cùng độ cao, biết \[ABCD\] là hình thang vuông ở \(A\) và \(B\) với độ dài \(AB = 25\,\,m,\,\,AD = 15\,\,m,\,\,BC = 18\,\,{\rm{m}}.\) Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở \(C\) nên người ta lấy độ cao ở các điểm \[B,\,\,C,\,\,D\] xuống thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng. Giá trị của \(a\) là số nào sau đây?

Xem đáp án » 25/06/2024 1,114

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store