Câu hỏi:

25/06/2024 2,257 Lưu

Cho hình chóp \[S.ABC\] có đáy là tam giác vuông tại \(A,\,\,AB = a,\,\,AC = 2a,\,\,SA\) vuông góc với mặt phẳng đáy và \(SA = 2a.\) Gọi \(G\) là trọng tâm của \(\Delta ABC.\) Khoảng cách giữa hai đường thẳng \[SG\] và \[BC\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi \[M\] là trung điểm của \[BC\].

Trong mặt phẳng \(\left( {SAM} \right)\) dựng \(S'M\,{\rm{//}}\,SG.\)

Suy ra \[S'A = \frac{3}{2}SA = 3a\].

Do đó \(d\left( {SG,BC} \right) = d\left( {SG,\,\,\left( {S'BC} \right)} \right) = d\left( {G,\,\,\left( {S'BC} \right)} \right)\)

Vì \(AM = 3GM\) nên \(d\left( {G,\,\,\left( {S'BC} \right)} \right) = \frac{1}{3}d\left( {A,\,\,\left( {S'BC} \right)} \right)\)

Kẻ \(AH \bot BC\); \(AK \bot S'H\) ta có \(BC \bot \left( {S'AH} \right)\); \(AK = d\left( {A,\,\,\left( {S'BC} \right)} \right).\)

Ta có \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} \Rightarrow AH = \frac{{2a}}{{\sqrt 5 }}.\) Suy ra \(\frac{1}{{A{K^2}}} = \frac{1}{{S'{A^2}}} + \frac{1}{{A{H^2}}} \Rightarrow AK = \frac{{6a}}{7}.\)

Do đó \(d\left( {G,\,\,\left( {S'BC} \right)} \right) = \frac{1}{3}AK = \frac{{2a}}{7}.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Media VietJack

Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)

Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]

Khi hạ độ cao các điểm ở các điểm  xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]

Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)

Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)

Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP