Câu hỏi:
25/06/2024 124Cho số phức \(z = m - 2 + \left( {{m^2} - 1} \right)i\) với \(m \in \mathbb{R}.\) Gọi \((C)\) là tập hợp các điểm biểu diễn số phức \(z\) trong mặt phẳng tọa độ. Diện tích hình phẳng giới hạn bởi \((C)\) và trục hoành bằng
Quảng cáo
Trả lời:
Gọi \(M\left( {x\,;\,\,y} \right)\) là điểm biểu diễn số phức
Theo giả thiết, ta có \(z = m - 2 + \left( {{m^2} - 1} \right)i\) nên \(\left\{ {\begin{array}{*{20}{l}}{x = m - 2}\\{y = {m^2} - 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m = x + 2}\\{y = {{\left( {x + 2} \right)}^2} - 1}\end{array}} \right.} \right.\)
\( \Rightarrow y = {x^2} + 4x + 3\)\( \Rightarrow (C):y = {x^2} + 4x + 3\).
Phương trình hoành độ giao điểm của \((C)\) và \(Ox\) là: \({x^2} + 4x + 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 3}\\{x = - 1}\end{array}} \right.\).
Suy ra diện tích hình phẳng giới hạn bởi \((C)\) và trục hoành là:
\(S = \int\limits_{ - 3}^{ - 1} {\left| {{x^2} + 4x + 3} \right|} \,{\rm{d}}x = \left| {\int\limits_{ - 3}^{ - 1} {\left( {{x^2} + 4x + 3} \right)} \,{\rm{d}}x} \right|\)\[ = \left| {\left. {\left( {\frac{{{x^3}}}{3} + 2{x^2} + 3x} \right)} \right|_{ - 3}^{ - 1}} \right| = \left| { - \frac{4}{3} - 0} \right| = \frac{4}{3}.\]
Vậy \(S = \frac{4}{3}.\) Chọn D.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.
Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].
Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.
Lời giải
Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)
Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]
Khi hạ độ cao các điểm ở các điểm xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.
Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)
Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)
Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.