Câu hỏi:

25/06/2024 2,914 Lưu

Một trang trại cần xây dựng một bể chứa nước hình hộp chữ nhật bằng gạch không nắp ở phía trên. Biết bể có chiều dài gấp 2 lần chiều rộng và thể tích (phần chứa nước) băng \(8\,\;{{\rm{m}}^3}.\) Hỏi chiều cao của bế gần nhất với kết quả nào dưới đây để số lượng gạch dùng đế xây bể là nhỏ nhất?

A. \(1,8\;\,{\rm{m}}.\)  
B. \(1,3\;\,{\rm{m}}.\)  
C. \(1,1\;\,{\rm{m}}.\)           
D. \(1,2\,\;{\rm{m}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[x\,,\,\,2x\,,\,\,h\,\,(m)\] lần lượt là chiều rộng, chiều dài và chiều cao của bể.

Khi đó thể tích bể là \(x \cdot 2x \cdot h = 8 \Rightarrow h = \frac{4}{{{x^2}}}.\)

Diện tích cần xây dựng cho bể không nắp là:

\(S = 2x \cdot x + 2 \cdot 2x \cdot h = 2{x^2} + 6xh = 2{x^2} + 6x \cdot \frac{4}{{{x^2}}} = 2{x^2} + \frac{{24}}{x}.\)

Để số lượng gạch dùng để xây bể là nhỏ nhất thì diện tích cần xây dựng là nhỏ nhất.

Áp dụng bất đẳng thức AM – GM nên

\(2{x^2} + \frac{{24}}{x} = 2{x^2} + \frac{{12}}{x} + \frac{{12}}{x} \ge 3\sqrt[3]{{2{x^2} \cdot \frac{{12}}{x} \cdot \frac{{12}}{x}}} = 2\sqrt[3]{{288}}\)

Dấu  xảy ra khi \(2{x^2} = \frac{{12}}{x} \Leftrightarrow {x^3} = 6 \Rightarrow x = \sqrt[3]{6}.\)

Khi đó \(h = \frac{4}{{{x^2}}} = \frac{4}{{{{\left( {\sqrt[3]{6}} \right)}^2}}} \approx 1,21.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016) là \(31 + 29 + 31 + 30 = 121\) (ngày)

Số tiền bỏ ống heo ngày đầu tiên là \({u_1} = 100.\)

Số tiền bỏ ống heo ngày thứ hai là \({u_2} = 100 + 1.100.\)

Số tiền bỏ ống heo ngày thứ ba là \({u_3} = 100 + 2.100.\)

Số tiền bỏ ống heo ngày thứ \(n\) là \({u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right) \cdot 100 = 100n\)

Số tiền bỏ ống heo ngày thứ 121 là \({u_{121}} = 100 \cdot 121 = 12\,\,100\).

Sau 121 ngày thì số tiền An tích luỹ được là tổng của 121 số hạng đầu của cấp số cộng có số hạng đầu \({u_1} = 100\,;\,\,d = 100.\)

Vậy số tiền An tích luỹ được là:

\({S_{121}} = \frac{{121}}{2}\left( {{u_1} + {u_{121}}} \right) = \frac{{121}}{2}\left( {100 + 12\,\,100} \right) = 738\,\,100\) (đồng). Chọn A.

Câu 6

A. 3.                              
B. 4.                              
C. 5.     
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Quyền được hưởng hòa bình, tự do và dân sinh.
B. Quyền tự quyết, quyền đấu tranh và quyền tự do. 
C. Quyền tự do ngôn luận, tự do đi lại, tự do đấu tranh.
D. Quyền tự do, dân chủ, bình đẳng và quyền tự quyết.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP