Câu hỏi:

25/06/2024 964

Một trang trại cần xây dựng một bể chứa nước hình hộp chữ nhật bằng gạch không nắp ở phía trên. Biết bể có chiều dài gấp 2 lần chiều rộng và thể tích (phần chứa nước) băng \(8\,\;{{\rm{m}}^3}.\) Hỏi chiều cao của bế gần nhất với kết quả nào dưới đây để số lượng gạch dùng đế xây bể là nhỏ nhất?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \[x\,,\,\,2x\,,\,\,h\,\,(m)\] lần lượt là chiều rộng, chiều dài và chiều cao của bể.

Khi đó thể tích bể là \(x \cdot 2x \cdot h = 8 \Rightarrow h = \frac{4}{{{x^2}}}.\)

Diện tích cần xây dựng cho bể không nắp là:

\(S = 2x \cdot x + 2 \cdot 2x \cdot h = 2{x^2} + 6xh = 2{x^2} + 6x \cdot \frac{4}{{{x^2}}} = 2{x^2} + \frac{{24}}{x}.\)

Để số lượng gạch dùng để xây bể là nhỏ nhất thì diện tích cần xây dựng là nhỏ nhất.

Áp dụng bất đẳng thức AM – GM nên

\(2{x^2} + \frac{{24}}{x} = 2{x^2} + \frac{{12}}{x} + \frac{{12}}{x} \ge 3\sqrt[3]{{2{x^2} \cdot \frac{{12}}{x} \cdot \frac{{12}}{x}}} = 2\sqrt[3]{{288}}\)

Dấu  xảy ra khi \(2{x^2} = \frac{{12}}{x} \Leftrightarrow {x^3} = 6 \Rightarrow x = \sqrt[3]{6}.\)

Khi đó \(h = \frac{4}{{{x^2}}} = \frac{4}{{{{\left( {\sqrt[3]{6}} \right)}^2}}} \approx 1,21.\) Chọn D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(G\left( x \right) = 0,035{x^2}\left( {15 - x} \right),\)trong đó \[x\] là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất là

Xem đáp án » 25/06/2024 16,924

Câu 2:

Trong không gian với hệ trục tọa độ \[Oxyz,\] điểm \(M\left( {a\,;\,\,b\,;\,\,c} \right)\) thuộc mặt phẳng \((P):x + y + z - 6 = 0\) và cách đều các điểm \(A\left( {1\,;\,\,6\,;\,\,0} \right),\,\,B\left( { - 2\,;\,\,2\,;\,\, - 1} \right),\,\,C\left( {5\,;\,\, - 1\,;\,\,3} \right).\) Tích \[abc\] bằng

Xem đáp án » 25/06/2024 12,867

Câu 3:

Sinh nhật bạn của An vào ngày 01 tháng năm. An muốn mua một món quà sinh nhật cho bạn nên quyết định bỏ ống heo 100 đồng vào ngày 01 tháng 01 năm 2016, sau đó cứ liên tục ngày sau hơn ngày trước 100 đồng. Hỏi đến ngày sinh nhật của bạn, An đã tích lũy được bao nhiêu tiền? (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016).

Xem đáp án » 25/06/2024 12,784

Câu 4:

Media VietJack

 

Một phần sân trường được định vị bởi các điểm \[A,\,\,B,\,\,C,\,\,D\] như hình vẽ.

Bước đầu chúng được lấy "thăng bằng" đế có cùng độ cao, biết \[ABCD\] là hình thang vuông ở \(A\) và \(B\) với độ dài \(AB = 25\,\,m,\,\,AD = 15\,\,m,\,\,BC = 18\,\,{\rm{m}}.\) Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở \(C\) nên người ta lấy độ cao ở các điểm \[B,\,\,C,\,\,D\] xuống thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng. Giá trị của \(a\) là số nào sau đây?

Xem đáp án » 25/06/2024 9,216

Câu 5:

Tìm số nghiệm nguyên dương \(\left( {x\,;\,\,y} \right)\) của bất phương trình \(\frac{x}{3} + \frac{y}{4} \le 1\)?

Xem đáp án » 25/06/2024 7,208

Câu 6:

Media VietJack

Trong đợt hội trại "Khi tôi 18" được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên 1 pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật \[ABCD\] có kích thước \(AB = 2\,m\,,\,\,AD = 3\,\;{\rm{m}}\), phần còn lại sẽ được trang trí hoa văn cho phù hợp và pano được đặt sao cho cạnh \[CD\] tiếp xúc với mặt đất. Hỏi vị trí cao nhất của pano so với mặt đất là bao nhiêu?

Xem đáp án » 11/07/2024 6,980

Câu 7:

Media VietJack

Trong chương trình nông thôn mới, tại một xã Y có xây một cây cầu bằng bê tông như hình vẽ. Tính thể tích (đơn vị \({m^3})\) khối bê tông để đổ đủ cây cầu. (đường cong trong hình vẽ là các đường parabol)?

Xem đáp án » 25/06/2024 4,538