Cho hàm số y=f(x) có bảng biến thiên như sau:

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({4^{f\left( x \right) - m}} + {3^{f\left( x \right) - m}} - 5f\left( x \right) + 5m - 2 = 0\) có nghiệm?
Cho hàm số y=f(x) có bảng biến thiên như sau:

Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({4^{f\left( x \right) - m}} + {3^{f\left( x \right) - m}} - 5f\left( x \right) + 5m - 2 = 0\) có nghiệm?
Quảng cáo
Trả lời:
Xét hàm số \(g\left( t \right) = {4^t} + {3^t} - 5t - 2\) trên \(\mathbb{R}\)
\(g'\left( t \right) = {4^t} \cdot \ln 4 + {3^t} \cdot \ln 3 - 5\,;\,\,g''\left( t \right) = {4^t} \cdot {\ln ^2}4 + {3^t} \cdot {\ln ^2}3 > 0\,\,\forall t \in \mathbb{R}\)
\( \Rightarrow \) Phương trình \(g\left( t \right) = 0\) có tối đa 2 nghiệm.
Mà \(g(0) = g(1) = 0\) nên phương trình \({4^{f\left( x \right) - m}} + {3^{f\left( x \right) - m}} - 5f\left( x \right) + 5m - 2 = 0\)
\( \Leftrightarrow g\left( {f\left( x \right) - m} \right) = 0\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( x \right) - m = 0}\\{f\left( x \right) - m = 1}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f\left( x \right) = m}\\{f\left( x \right) = m + 1}\end{array}} \right.} \right.\).
Yêu cầu bài toán \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 \le m \le 1}\\{ - 1 \le m + 1 \le 1}\end{array} \Leftrightarrow - 2 \le m \le 1} \right.\).
Do \(m\) nguyên nên \(m \in \left\{ { - 2\,;\,\, - 1\,;\,\,0\,;\,\,1} \right\}.\)
Vậy có 4 giá trị nguyên của tham số \(m\) thoả mãn yêu cầu bài toán. Chọn D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.
Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].
Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.
Câu 2
Lời giải
Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016) là \(31 + 29 + 31 + 30 = 121\) (ngày)
Số tiền bỏ ống heo ngày đầu tiên là \({u_1} = 100.\)
Số tiền bỏ ống heo ngày thứ hai là \({u_2} = 100 + 1.100.\)
Số tiền bỏ ống heo ngày thứ ba là \({u_3} = 100 + 2.100.\)
Số tiền bỏ ống heo ngày thứ \(n\) là \({u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right) \cdot 100 = 100n\)
Số tiền bỏ ống heo ngày thứ 121 là \({u_{121}} = 100 \cdot 121 = 12\,\,100\).
Sau 121 ngày thì số tiền An tích luỹ được là tổng của 121 số hạng đầu của cấp số cộng có số hạng đầu \({u_1} = 100\,;\,\,d = 100.\)
Vậy số tiền An tích luỹ được là:
\({S_{121}} = \frac{{121}}{2}\left( {{u_1} + {u_{121}}} \right) = \frac{{121}}{2}\left( {100 + 12\,\,100} \right) = 738\,\,100\) (đồng). Chọn A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

