Cho \((H)\) là đa giác đều \[2n\] đỉnh nội tiếp đường tròn tâm \(O\,\,(n \in \mathbb{N},\,\,n > 2).\) Gọi \(S\) là tập hợp các tam giác có 3 đỉnh là các đỉnh của đa giác \((H).\) Chọn ngẫu nhiên một tam giác thuộc tập \(S,\) biết rằng xác suất chọn một tam giác vuông trong tập \(S\) là \(\frac{3}{{29}}\). Tìm \(n\).
Cho \((H)\) là đa giác đều \[2n\] đỉnh nội tiếp đường tròn tâm \(O\,\,(n \in \mathbb{N},\,\,n > 2).\) Gọi \(S\) là tập hợp các tam giác có 3 đỉnh là các đỉnh của đa giác \((H).\) Chọn ngẫu nhiên một tam giác thuộc tập \(S,\) biết rằng xác suất chọn một tam giác vuông trong tập \(S\) là \(\frac{3}{{29}}\). Tìm \(n\).
Quảng cáo
Trả lời:
Số phần tử của không gian mẫu \(n\left( \Omega \right) = C_{2n}^3.\)
Tam giác vuông được chọn là tam giác chứa cạnh là đường kính của đường tròn tâm \[O.\]
Đa giác đều 2n đỉnh chứa 2n đường chéo là đường kính của đường tròn tâm \[O,\] mỗi đường kính tạo nên \(2n - 2\) tam giác vuông.
Do đó số tam giác vuông trong tập \[S\] là: \(\frac{{2n}}{2} \cdot \left( {2n - 2} \right) = 2n\left( {n - 1} \right).\)
Xác suất chọn một tam giác vuông trong tập \[S\] là:
\(\frac{{2n\left( {n - 1} \right)}}{{C_{2n}^3}} = \frac{{2n\left( {n - 1} \right)}}{{\frac{{\left( {2n} \right)!}}{{\left( {2n - 3} \right)!.3!}}}} = \frac{{2n\left( {n - 1} \right)}}{{\frac{{2n\left( {2n - 1} \right)\left( {2n - 2} \right)}}{6}}}\)\( = \frac{3}{{2n - 1}} = \frac{3}{{29}} \Rightarrow n = 15\).
Đáp án: 15.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.
Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].
Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.
Câu 2
Lời giải
Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016) là \(31 + 29 + 31 + 30 = 121\) (ngày)
Số tiền bỏ ống heo ngày đầu tiên là \({u_1} = 100.\)
Số tiền bỏ ống heo ngày thứ hai là \({u_2} = 100 + 1.100.\)
Số tiền bỏ ống heo ngày thứ ba là \({u_3} = 100 + 2.100.\)
Số tiền bỏ ống heo ngày thứ \(n\) là \({u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right) \cdot 100 = 100n\)
Số tiền bỏ ống heo ngày thứ 121 là \({u_{121}} = 100 \cdot 121 = 12\,\,100\).
Sau 121 ngày thì số tiền An tích luỹ được là tổng của 121 số hạng đầu của cấp số cộng có số hạng đầu \({u_1} = 100\,;\,\,d = 100.\)
Vậy số tiền An tích luỹ được là:
\({S_{121}} = \frac{{121}}{2}\left( {{u_1} + {u_{121}}} \right) = \frac{{121}}{2}\left( {100 + 12\,\,100} \right) = 738\,\,100\) (đồng). Chọn A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

