Câu hỏi:

19/08/2025 293 Lưu

Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác vuông tại \[A,\,\,SA\] vuông góc với mặt phẳng \(\left( {ABC} \right)\) và \(AB = 2\,,\,\,AC = 4\,,\,\,SA = \sqrt 5 \). Mặt cầu đi qua các đỉnh của hình chóp \[S.ABC\] có bán kính là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Cách 1: Gọi \[M,\,\,H\] lần lượt là trung điểm của \[BC,\,\,SA.\]

Ta có tam giác \[ABC\] vuông tại \(A\) nên \(M\) là tâm đường tròn ngoại tiếp tam giác \[ABC.\]

Qua \(M\) kẻ đường thẳng \(d\) sao cho \(d \bot \left( {ABC} \right) \Rightarrow d\) là trục đường tròn ngoại tiếp tam giác ABC.

Trong mặt phẳng \(\left( {SAM} \right)\) kẻ đường trung trực \(\Delta \) của đoạn \[SA,\] cắt \(d\) tại \(I.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{IA = IB = IC}\\{IA = IS}\end{array} \Rightarrow IA = IB = IC = IS \Rightarrow I} \right.\) là tâm mặt cầu ngoại tiếp hình chóp S.ABC.

Ta có \[\left\{ {\begin{array}{*{20}{l}}{HA \bot \left( {ABC} \right)}\\{IM \bot \left( {ABC} \right)}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{HA \bot AM}\\{HA//IM}\end{array}} \right.} \right.\]

\(\left\{ {\begin{array}{*{20}{l}}{HI \bot SA}\\{AM \bot SA}\\{HI,\,\,SA,\,\,AM \subset \left( {SAM} \right)}\end{array}} \right. \Rightarrow HI\,{\rm{//}}\,AM\)

Suy ra tứ giác \[HAMI\] là hình chữ nhật.

Ta có \(AM = \frac{1}{2}BC = \frac{1}{2}\sqrt {{2^2} + {4^2}}  = \sqrt 5 \,,\,\,IM = \frac{1}{2}SA = \frac{{\sqrt 5 }}{2}.\)

Bán kính mặt cầu ngoại tiếp hình chóp \[S.ABC\] là \(R = AI = \sqrt {A{M^2} + I{M^2}}  = \sqrt {5 + \frac{5}{4}}  = \frac{5}{2}.\)

Cách 2: Sử dụng kết quả: Nếu \[S.ABC\] là một tứ diện vuông đỉnh \(A\) thì bán kính mặt cầu ngoại tiếp tứ diện \[S.ABC\] được tính bởi công thức: \(R = \frac{1}{2}\sqrt {A{S^2} + A{B^2} + A{C^2}} \).

Áp dụng công thức trên, ta có \(R = \frac{1}{2}\sqrt {{{\left( {\sqrt 5 } \right)}^2} + {2^2} + {4^2}}  = \frac{5}{2}.\)

Đáp án: \(\frac{5}{2}.\)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Media VietJack

Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)

Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]

Khi hạ độ cao các điểm ở các điểm  xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]

Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)

Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)

Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.

Câu 6

A. 3.                              
B. 4.                              
C. 5.     
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Quyền được hưởng hòa bình, tự do và dân sinh.
B. Quyền tự quyết, quyền đấu tranh và quyền tự do. 
C. Quyền tự do ngôn luận, tự do đi lại, tự do đấu tranh.
D. Quyền tự do, dân chủ, bình đẳng và quyền tự quyết.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP