
Trong chương trình nông thôn mới, tại một xã Y có xây một cây cầu bằng bê tông như hình vẽ. Tính thể tích (đơn vị \({m^3})\) khối bê tông để đổ đủ cây cầu. (đường cong trong hình vẽ là các đường parabol)?
Quảng cáo
Trả lời:
Gọi \(\left( {{P_1}} \right):y = {a_1}{x^2} + {b_1}\) là parabol đi qua hai điểm \(A\left( {\frac{{19}}{2};\,\,0} \right),\,\,B\left( {0\,;\,\,2} \right).\)
Nên ta có hệ phương trình sau: \(\left\{ {\begin{array}{*{20}{l}}{0 = a \cdot {{\left( {\frac{{19}}{2}} \right)}^2} + 2}\\{2 = b}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{a_1} = - \frac{8}{{361}}}\\{{b_1} = 2}\end{array} \Rightarrow \left( {{P_1}} \right):y = - \frac{8}{{361}}{x^2} + 2} \right.} \right..\)
Gọi \(\left( {{P_2}} \right):y = {a_2}{x^2} + {b_2}\) là parabol đi qua hai điểm \(C\left( {10\,;\,\,0} \right),\,\,D\left( {0\,;\,\,\frac{5}{2}} \right)\)
Nên ta có hệ phương trình sau: \(\left\{ {\begin{array}{*{20}{l}}{0 = {a_2} \cdot {{(10)}^2} + \frac{5}{2}}\\{\frac{5}{2} = {b_2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{a_2} = - \frac{1}{{40}}}\\{{b_2} = \frac{5}{2}}\end{array} \Rightarrow \left( {{P_2}} \right):y = - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right.} \right..\)
Thể tích của bê tông là: \[V = 5 \cdot 2\left[ {\int\limits_0^{10} {\left( { - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right){\rm{d}}x} \, - \int\limits_0^{\frac{{19}}{2}} {\left( { - \frac{8}{{361}}{x^2} + 2} \right){\rm{d}}x} } \right] = 40\;\,\left( {{{\rm{m}}^3}} \right).\]
Đáp án: 40.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.
Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].
Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.
Câu 2
Lời giải
Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016) là \(31 + 29 + 31 + 30 = 121\) (ngày)
Số tiền bỏ ống heo ngày đầu tiên là \({u_1} = 100.\)
Số tiền bỏ ống heo ngày thứ hai là \({u_2} = 100 + 1.100.\)
Số tiền bỏ ống heo ngày thứ ba là \({u_3} = 100 + 2.100.\)
Số tiền bỏ ống heo ngày thứ \(n\) là \({u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right) \cdot 100 = 100n\)
Số tiền bỏ ống heo ngày thứ 121 là \({u_{121}} = 100 \cdot 121 = 12\,\,100\).
Sau 121 ngày thì số tiền An tích luỹ được là tổng của 121 số hạng đầu của cấp số cộng có số hạng đầu \({u_1} = 100\,;\,\,d = 100.\)
Vậy số tiền An tích luỹ được là:
\({S_{121}} = \frac{{121}}{2}\left( {{u_1} + {u_{121}}} \right) = \frac{{121}}{2}\left( {100 + 12\,\,100} \right) = 738\,\,100\) (đồng). Chọn A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

