Câu hỏi:

19/08/2025 337 Lưu

Có bao nhiêu cặp số nguyên \(\left( {x\,;\,\,y} \right)\) thoả mãn \({2022^{ - 1}} \le y \le 2022\) và \({2.3^{x - 1}} - {\log _3}\left( {{3^{x - 2}} + 2y} \right) = 6y - x + 1\,{\rm{? }}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt \({\log _3}\left( {{3^{x - 2}} + 2y} \right) = a \Leftrightarrow {3^{x - 2}} + 2y = {3^a}\) và \({2.3^{x - 1}} - a = 6y - x + 1\).

Suy ra \(\left\{ {\begin{array}{*{20}{l}}{{3^{x - 2}} + 2y = {3^a}}\\{{{2.3}^{x - 1}} - a = 6y - x + 1}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3 \cdot {3^a} = {3^{x - 1}} + 6y}\\{2 \cdot {3^{x - 1}} - a = 6y - x + 1}\end{array}} \right.\)

Lấy (1) trừ (2), ta được \(3 \cdot {3^a} - 2 \cdot {3^{x - 1}} + a = {3^{x - 1}} + x - 1\)

\( \Leftrightarrow {3^{a + 1}} + a = {3^x} + x - 1\)\( \Leftrightarrow f(a) = f\left( {x - 1} \right)\) với \(f(t) = {3^{t + 1}} + t\) là hàm số đồng biến.

Do đó \(a = x - 1 \Leftrightarrow {3^{x - 2}} + 2y = {3^{x - 1}} \Leftrightarrow 2y = \frac{2}{9}{.3^x} \Leftrightarrow y = {3^{x - 2}}\).

Mà \({2022^{ - 1}} \le y \le 2022 \Rightarrow {2022^{ - 1}} \le {3^{x - 2}} \le 2022\)\( \Leftrightarrow  - {\log _3}2022 \le x - 2 \le {\log _3}2022\)

\( \Leftrightarrow  - 4,93 \le x \le 8,932\) và \(x \in \mathbb{Z}\) có 13 giá trị nguyên \(x\) thỏa mãn.

Vậy có tất cả 13 cặp số nguyên \(\left( {x\,;\,\,y} \right)\) thỏa mãn yêu cầu bài toán.

Đáp án: 13.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Media VietJack

Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)

Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]

Khi hạ độ cao các điểm ở các điểm  xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]

Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)

Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)

Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.

Câu 6

A. 3.                              
B. 4.                              
C. 5.     
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Quyền được hưởng hòa bình, tự do và dân sinh.
B. Quyền tự quyết, quyền đấu tranh và quyền tự do. 
C. Quyền tự do ngôn luận, tự do đi lại, tự do đấu tranh.
D. Quyền tự do, dân chủ, bình đẳng và quyền tự quyết.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP