Cho mặt phẳng \(\left( P \right):x - y - z - 1 = 0\) và hai điểm \(A\left( { - 5\,;\,\,1\,;\,\,2} \right),\,\,B\left( {1\,;\,\, - 2\,;\,\,2} \right).\) Trong tất cả các điểm \(M\) thuộc mặt phẳng \(\left( P \right)\), để \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất thì điểm đó có tung độ \({y_M}\) là
Cho mặt phẳng \(\left( P \right):x - y - z - 1 = 0\) và hai điểm \(A\left( { - 5\,;\,\,1\,;\,\,2} \right),\,\,B\left( {1\,;\,\, - 2\,;\,\,2} \right).\) Trong tất cả các điểm \(M\) thuộc mặt phẳng \(\left( P \right)\), để \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất thì điểm đó có tung độ \({y_M}\) là
Quảng cáo
Trả lời:
Gọi \(I\) là điểm thoả mãn \[\overrightarrow {IA} + 2\overrightarrow {IB} = \vec 0 \Rightarrow I\left( { - 1\,;\,\, - 1\,;\,\,2} \right).\]
Khi đó \(T = \left| {\overrightarrow {MA} + 2\overrightarrow {MB} } \right| = 3MI \Rightarrow {T_{\min }} \Leftrightarrow M{I_{\min }}\)
\( \Leftrightarrow M\) là hình chiếu của \(I\) lên mặt phẳng \((P).\)
Khi đó đường thẳng \[MI\] đi qua \[I\left( { - 1\,;\,\, - 1\,;\,\,2} \right)\] và vuông góc với \((P)\) nên nhận VTPT \(\vec n\left( {1\,;\,\, - 1\,;\,\, - 1} \right)\) của \((P)\) làm VTCP, phương trình là \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 + t}\\{y = - 1 - t}\\{z = 2 - t}\end{array}\,\,\,\left( {t \in \mathbb{R}} \right)} \right..\)
Ta có \(M = IM \cap (P)\). Toạ độ \(M\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x = - 1 + t}\\{y = - 1 - t}\\{z = 2 - t}\\{x - y - z - 1 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{x = 0}\\{y = - 2}\\{z = 1}\end{array}} \right.} \right.\)
\( \Rightarrow M\left( {0\,;\,\, - 2\,;\,\,1} \right) \Rightarrow {y_M} = - 2.\)
Đáp án: −2.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.
Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].
Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.
Câu 2
Lời giải
Số ngày bạn An để dành tiền (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016) là \(31 + 29 + 31 + 30 = 121\) (ngày)
Số tiền bỏ ống heo ngày đầu tiên là \({u_1} = 100.\)
Số tiền bỏ ống heo ngày thứ hai là \({u_2} = 100 + 1.100.\)
Số tiền bỏ ống heo ngày thứ ba là \({u_3} = 100 + 2.100.\)
Số tiền bỏ ống heo ngày thứ \(n\) là \({u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right) \cdot 100 = 100n\)
Số tiền bỏ ống heo ngày thứ 121 là \({u_{121}} = 100 \cdot 121 = 12\,\,100\).
Sau 121 ngày thì số tiền An tích luỹ được là tổng của 121 số hạng đầu của cấp số cộng có số hạng đầu \({u_1} = 100\,;\,\,d = 100.\)
Vậy số tiền An tích luỹ được là:
\({S_{121}} = \frac{{121}}{2}\left( {{u_1} + {u_{121}}} \right) = \frac{{121}}{2}\left( {100 + 12\,\,100} \right) = 738\,\,100\) (đồng). Chọn A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

