Câu hỏi:

25/06/2024 153

Cho mặt phẳng \(\left( P \right):x - y - z - 1 = 0\) và hai điểm \(A\left( { - 5\,;\,\,1\,;\,\,2} \right),\,\,B\left( {1\,;\,\, - 2\,;\,\,2} \right).\) Trong tất cả các điểm \(M\) thuộc mặt phẳng \(\left( P \right)\), để \(\left| {\overrightarrow {MA}  + 2\overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất thì điểm đó có tung độ \({y_M}\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(I\) là điểm thoả mãn \[\overrightarrow {IA}  + 2\overrightarrow {IB}  = \vec 0 \Rightarrow I\left( { - 1\,;\,\, - 1\,;\,\,2} \right).\]

Khi đó \(T = \left| {\overrightarrow {MA}  + 2\overrightarrow {MB} } \right| = 3MI \Rightarrow {T_{\min }} \Leftrightarrow M{I_{\min }}\)

\( \Leftrightarrow M\) là hình chiếu của \(I\) lên mặt phẳng \((P).\)

Khi đó đường thẳng \[MI\] đi qua \[I\left( { - 1\,;\,\, - 1\,;\,\,2} \right)\] và vuông góc với \((P)\) nên nhận VTPT \(\vec n\left( {1\,;\,\, - 1\,;\,\, - 1} \right)\) của \((P)\) làm VTCP, phương trình là \(\left\{ {\begin{array}{*{20}{l}}{x =  - 1 + t}\\{y =  - 1 - t}\\{z = 2 - t}\end{array}\,\,\,\left( {t \in \mathbb{R}} \right)} \right..\)

Ta có \(M = IM \cap (P)\). Toạ độ \(M\) là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{l}}{x =  - 1 + t}\\{y =  - 1 - t}\\{z = 2 - t}\\{x - y - z - 1 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{x = 0}\\{y =  - 2}\\{z = 1}\end{array}} \right.} \right.\)

\( \Rightarrow M\left( {0\,;\,\, - 2\,;\,\,1} \right) \Rightarrow {y_M} =  - 2.\)

Đáp án: −2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Media VietJack

Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)

Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]

Khi hạ độ cao các điểm ở các điểm  xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]

Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)

Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)

Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP