Câu hỏi:
25/06/2024 139Cho hình nón có độ dài đường kính đáy là \[2R,\] độ dài đường sinh là \(R\sqrt {10} \) và hình trụ có chiều cao và đường kính đáy đều bằng \[2R,\] lồng vào nhau như hình vẽ. Tỉ số thể tích phần khối nón nằm ngoài khối trụ và phần khối trụ không giao với khối nón là
Quảng cáo
Trả lời:
Ta có \(SI = \sqrt {S{A^2} - I{A^2}} = \sqrt {10{R^2} - {R^2}} = 3R\)
\( \Rightarrow SE = SI - EI = R.\)
Mặt khác, \(\frac{{SE}}{{SI}} = \frac{{EF}}{{I{A_1}}} = \frac{1}{3} \Rightarrow EF = \frac{{I{A_1}}}{3} = \frac{R}{3}.\)
Thể tích khối nón lớn (có đường cao \[SI)\] là:
\({V_1} = \frac{1}{3}\pi {R^2}.3R = \pi {R^3}.\)
Thể tích khối nón nhỏ (có đường cao \[SE)\] là:
\({V_2} = \frac{1}{3}\pi {\left( {\frac{R}{3}} \right)^2} \cdot R = \frac{{\pi {R^3}}}{{27}}.\)Thể tích phần khối giao nhau giữa khối nón và khối trụ là: \({V_3} = {V_1} - {V_2} = \frac{{26}}{{27}}\pi {R^3}.\)
Thể tích khối trụ là: \({V_4} = \pi {R^2} \cdot 2R = 2\pi {R^3}.\)
Suy ra thể tích phần khối trụ không giao với khối nón là: \(V = {V_4} - {V_3} = \frac{{28}}{{27}}\pi {R^3}.\)
Vậy tỉ số thể tích cần tìm là: \(\frac{{{V_2}}}{V} = \frac{1}{{28}}.\)
Đáp án: \(\frac{1}{{28}}\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.
Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].
Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.
Lời giải
Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)
Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]
Khi hạ độ cao các điểm ở các điểm xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.
Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)
Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)
Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.