Câu hỏi:

26/06/2024 1,751

Trong không gian \[Oxyz,\] cho hai vectơ \(\vec a = \left( {2\,;\,\,m - 1\,;\,\,3} \right)\) và \(\vec b = \left( {1\,;\,\,3\,;\,\, - 2n} \right).\) Giá trị của \[m,\,\,n\] để hai vectơ \(\vec a,\,\,\vec b\) cùng hướng với nhau là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta thấy \(\vec a\) và \(\vec b\) cùng hướng \( \Leftrightarrow \vec a = k\vec b\,\,(k > 0) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2 = k}\\{m - 1 = 3k}\\{3 = k\left( { - 2n} \right)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{k = 2}\\{m = 7\,;\,\,n =  - \frac{3}{4}}\end{array}} \right.} \right..\)

Vậy \(m = 7\,;\,\,n =  - \frac{3}{4}.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP