Câu hỏi:

26/06/2024 271

Media VietJack

Cho ba lực \(\overrightarrow {{F_1}}  = \overrightarrow {MA} \,,\,\,\overrightarrow {{F_2}}  = \overrightarrow {MB} \,,\,\,\overrightarrow {{F_3}}  = \overrightarrow {MC} \) cùng tác động vào một vật tại điếm \(M\) và vật đứng yên. Cho biết cường độ của \(\overrightarrow {{F_1}} \,,\,\,\overrightarrow {{F_2}} \) đều bằng \[100N\] và \(\widehat {AMB} = 60^\circ .\) Khi đó cường độ lực của \(\overrightarrow {{F_3}} \) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do vật đứng yên nên tổng hợp lực tác động vào vật bằng 0.

\(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \vec 0 \Leftrightarrow \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  =  - \overrightarrow {{F_3}}  \Rightarrow \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {{F_3}} } \right|{\rm{. }}\)

Lại có \({\left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right)^2} = {\overrightarrow {{F_1}} ^2} + 2 \cdot \overrightarrow {{F_1}}  \cdot \overrightarrow {{F_2}}  + {\overrightarrow {{F_2}} ^2} = F_1^2 + 2 \cdot {F_1} \cdot {F_2} \cdot \cos \widehat {AMB} + F_2^2\)

Khi đó \({\left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right)^2} = 2 \cdot {100^2} + 2 \cdot {100^2} \cdot \cos 60^\circ  = 3 \cdot {100^2}\)\( \Leftrightarrow \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = 100\sqrt 3 {\rm{.}}\)

Vậy \(\left| {\overrightarrow {{F_3}} } \right| = 100\sqrt 3 .\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP