Câu hỏi:

26/06/2024 1,274

Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) cắt đường thẳng \[d:y = m\left( {x - 1} \right)\] tại ba điểm phân biệt?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình hoành độ giao điểm của \((C)\) và \(d\) là:

\({x^3} - 3{x^2} + 2 = m\left( {x - 1} \right)\quad (1)\)

\( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 2} \right) = m\left( {x - 1} \right) \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - m - 2} \right) = 0\)

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - 1 = 0}\\{f\left( x \right) = {x^2} - 2x - m - 2 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{f\left( x \right) = {x^2} - 2x - m - 2 = 0\,\,\,\,\,\,\,\,\,(2)}\end{array}} \right.} \right.\]

Phương trình (1) luôn có nghiệm \(x = 1\). Khi đó, để phương trình (1) luôn có ba nghiệm phân biệt thì phương trình (2) phải có hai nghiệm phân biệt khác 1.

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' = 1 + m + 2 > 0}\\{f\left( 1 \right) \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m >  - 3}\\{m \ne  - 3}\end{array} \Leftrightarrow m >  - 3} \right.} \right.\).

Vậy \(m >  - 3\) thỏa mãn yêu cầu bài toán. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP