Câu hỏi:
26/06/2024 488Tìm tất cả các giá trị thực của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) cắt đường thẳng \[d:y = m\left( {x - 1} \right)\] tại ba điểm phân biệt?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương trình hoành độ giao điểm của \((C)\) và \(d\) là:
\({x^3} - 3{x^2} + 2 = m\left( {x - 1} \right)\quad (1)\)
\( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 2} \right) = m\left( {x - 1} \right) \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - m - 2} \right) = 0\)
\[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - 1 = 0}\\{f\left( x \right) = {x^2} - 2x - m - 2 = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{f\left( x \right) = {x^2} - 2x - m - 2 = 0\,\,\,\,\,\,\,\,\,(2)}\end{array}} \right.} \right.\]
Phương trình (1) luôn có nghiệm \(x = 1\). Khi đó, để phương trình (1) luôn có ba nghiệm phân biệt thì phương trình (2) phải có hai nghiệm phân biệt khác 1.
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' = 1 + m + 2 > 0}\\{f\left( 1 \right) \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m > - 3}\\{m \ne - 3}\end{array} \Leftrightarrow m > - 3} \right.} \right.\).
Vậy \(m > - 3\) thỏa mãn yêu cầu bài toán. Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Câu 2:
Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?
Câu 3:
Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng
Câu 4:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 20\,;\,\,20} \right]\) để hàm số \(y = - {x^4} + 6{x^2} + \left( {m - 2} \right)x + 3\) có đúng một điểm cực trị?
Câu 5:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}\)?
Câu 6:
Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là
Câu 7:
về câu hỏi!