Câu hỏi:

26/06/2024 4,361

Một hội trường A của một trường Đại học có 600 chỗ ngồi và các hàng ghế được xếp theo dạng bậc thang, hàng ghế đầu tiên có 15 chỗ ngồi và cao \[0,3{\rm{ }}m\] so với mặt nền. Mỗi hàng ghế sau có thêm 3 chỗ ngồi và cao hơn \[0,2{\rm{ }}m\] so với hàng ghế ngay trước nó. Hỏi hàng ghế cuối cùng của hội trường đó sẽ cao bao nhiêu mét so với mặt nền?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hàng ghế đầu tiên có 15 chỗ ngồi và cao \[0,3{\rm{ }}m\] so với mặt nền.

Hàng ghế thứ hai có 18 chỗ ngồi và cao \[0,5{\rm{ }}m\] so với mặt nền.

Hàng ghế thứ hai có 21 chỗ ngồi và cao \[0,7{\rm{ }}m\] so với mặt nền.

.....

Dễ thấy, số ghế ngồi và độ cao của hàng ghế lập thành các cấp số cộng.

Xét số ghế ngồi: \({u_1} = 15\) và công sai \(d = 3\) nên \({S_n} = \frac{{[30 + 3(n - 1)] \cdot n}}{2} = 600\).

Suy ra \(3{n^2} + 27n - 1\,\,200 = 0 \Leftrightarrow n = 16\) (số nguyên dương).

Xét độ cao của các hàng ghế: \({u_1} = 0,3\) và \(d = 0,2\).

Suy ra hàng ghế cuối cùng cao so với mặt nền là \({u_{16}} = 0,3 + 15 \cdot 0,2 = 3,3\,\,(m).\)

Chọn D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng

Xem đáp án » 26/06/2024 12,035

Câu 2:

Cho hàm số  Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Xem đáp án » 26/06/2024 11,466

Câu 3:

Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là

Xem đáp án » 26/06/2024 7,893

Câu 4:

Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?

Xem đáp án » 13/07/2024 7,577

Câu 5:

Cho hình phẳng \((H)\) được giới hạn bởi đường cong \(y = \sqrt {{m^2} - {x^2}} \) (\(m\) là tham số khác 0) và trục hoành. Khi \((H)\) quay xung quanh trục hoành được khối tròn xoay có thể tích \[V.\] Có bao nhiêu giá trị nguyên của tham số \(m\) để \(V < 1\,\,000\pi \)?

Xem đáp án » 26/06/2024 7,362

Câu 6:

Cho hàm số \[f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{e^x} + 1\quad {\rm{ khi }}x \ge 0}\\{{x^2} - 2x + 2\quad {\rm{ khi }}x < 0}\end{array}} \right..\] Biết \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f(\ln x - 1)}}{x}{\rm{d}}x}  = \frac{a}{b} + ce\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\) và \(\frac{a}{b}\) tối giản. Tính \(a + b + c.\)

Xem đáp án » 12/07/2024 6,239
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua