Cho hình chóp \[S.ABC\] có đáy \[ABC\] là tam giác đều, \(SA \bot \left( {ABC} \right).\) Mặt phẳng \(\left( {SBC} \right)\) cách \(A\) một khoảng bằng \(a\) và hợp với mặt phẳng \(\left( {ABC} \right)\) góc \(30^\circ .\) Thể tích của khối chóp \[S.ABC\] bằng
Quảng cáo
Trả lời:
Gọi \(I\) là trung điểm của BC suy ra \(AI \bot BC\) tại I.
Ta có \(SA \bot BC \Rightarrow (SAI) \bot BC \Rightarrow SI \bot BC.\)
\( \Rightarrow \left( {\widehat {\left( {SBC} \right),\,\,\left( {ABC} \right)}} \right) = \widehat {SIA} = 30^\circ .\)
Vì \(H\) là hình chiếu vuông góc của \(A\) trên \(SI,\) \(AH \subset (SAI) \Rightarrow AH \bot BC \Rightarrow d\left( {A,\,\,\left( {SBC} \right)} \right) = AH = a.\)
• Xét tam giác AHI vuông tại \(H\) suy ra \(AI = \frac{{AH}}{{\sin 30^\circ }} = 2a.\)Giả sử tam giác đều \[ABC\] có cạnh bằng \(x\), mà \[AI\] là đường cao.
• Xét tam giác \[ABI\] vuông tại \(I\) suy ra: \(x = AB = \frac{{AI}}{{\cos 30^\circ }} = \frac{{4a}}{{\sqrt 3 }}.\)
Diện tích tam giác đều \[ABC\] là: \({S_{ABC}} = \frac{1}{2} \cdot 2a \cdot \frac{{4a}}{{\sqrt 3 }} = \frac{{4{a^2}\sqrt 3 }}{3}.\)
• Xét tam giác \[SAI\] vuông tại \(A\) suy ra \(SA = AI \cdot \tan 30^\circ = \frac{{2a}}{{\sqrt 3 }}.\)
Vậy \({V_{S.ABC}} = \frac{1}{3} \cdot {S_{ABC}} \cdot SA = \frac{1}{3} \cdot \frac{{4{a^2}\sqrt 3 }}{3} \cdot \frac{{2a}}{{\sqrt 3 }} = \frac{{8{a^3}}}{9}.\) Chọn A.- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x = - \frac{d}{c}.\)
Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} = - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)
Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)
Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)
Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.
Lời giải
Ta có: \(\overrightarrow {AB} = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC} = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD} = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).
\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 = - 24\).
Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.