Câu hỏi:
26/06/2024 148Có bao nhiêu cặp số dương \(\left( {a\,;\,\,b} \right)\) thỏa mãn \({\log _2}a\) là số nguyên dương, \({\log _2}a = 1 + {\log _3}b\) và \({a^2} + {b^2} < {2020^2}\)?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Vì \({a^2} + {b^2} < {2020^2} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a < 2020}\\{b < 2020}\end{array}} \right..\)
Ta có \({\log _2}a = 1 + {\log _3}b < 1 + {\log _3}2020.\)
Vì \({\log _2}a\) là số nguyên dương nên \({\log _2}a \in \left\{ {1\,;\,\,2\,;\,\, \ldots \,;\,\,7} \right\}\)
Khi đó \(a\) có thể nhận 7 giá trị.
Lại có \(b = {3^{{{\log }_2}a - 1}}\) nên với mỗi giá trị của \(a\) thỏa mãn sẽ tương ứng với một giá trị của \(b\) nếu thỏa mãn điều kiện.
Thử lại: Với \({\log _2}a = 7 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = {2^7}}\\{b = {3^6}}\end{array} \Rightarrow {a^2} + {b^2} < {{2020}^2}} \right.\) (thỏa mãn).
Vậy có tất cả 7 cặp số thực dương \[\left( {a\,;\,b} \right)\] thỏa mãn. Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Câu 2:
Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng
Câu 3:
Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?
Câu 4:
Một hội trường A của một trường Đại học có 600 chỗ ngồi và các hàng ghế được xếp theo dạng bậc thang, hàng ghế đầu tiên có 15 chỗ ngồi và cao \[0,3{\rm{ }}m\] so với mặt nền. Mỗi hàng ghế sau có thêm 3 chỗ ngồi và cao hơn \[0,2{\rm{ }}m\] so với hàng ghế ngay trước nó. Hỏi hàng ghế cuối cùng của hội trường đó sẽ cao bao nhiêu mét so với mặt nền?
Câu 5:
Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là
Câu 6:
Ở ruồi giấm, xét 3 cặp gen: A, a; B, b và D, d; mỗi gen quy định 1 tính trạng, các alen trội là trội hoàn toàn. Phép lai P: 2 ruồi đều có kiểu hình trội về 3 tính trạng giao phối với nhau, tạo ra F1 gồm 24 loại kiểu gen và có 1,25% số ruồi mang kiểu hình lặn về 3 tính trạng nhưng kiểu hình này chỉ có ở ruồi đực. Theo lí thuyết, trong tổng số ruồi cái có kiểu hình trội về 3 tính trạng ở F1, số ruồi có 5 alen trội chiếm tỉ lệ là bao nhiêu?
Câu 7:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 20\,;\,\,20} \right]\) để hàm số \(y = - {x^4} + 6{x^2} + \left( {m - 2} \right)x + 3\) có đúng một điểm cực trị?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!