Câu hỏi:
26/06/2024 853Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Với \(\forall x \in \left( {1\,;\,\, + \infty } \right)\) ta có \(f\left( x \right) = \int {\left( {\frac{1}{{x - 1}} + 6x} \right)dx} = \ln \left( {x - 1} \right) + 3{x^2} + C.\)
Vì \(f\left( 2 \right) = 12 \Rightarrow C = 0 \Rightarrow f\left( x \right) = \ln \left( {x - 1} \right) + 3{x^2}.\)
\(F\left( x \right) = \int {\left( {\ln (x - 1) + 3{x^2}} \right)dx} = x\ln \left( {x - 1} \right) - \int x d\left( {\ln \left( {x - 1} \right)} \right) + {x^3}\)
\( = x\ln dx - \int x \cdot \frac{1}{{x - 1}}dx + {x^3}\)\[ = x\ln \left( {x - 1} \right) - x - \ln \left( {x - 1} \right) + {x^3} + C' \cdot F(2) = 6\] nên \(C' = 0.\)
Suy ra \(F\left( x \right) = x\ln \left( {x - 1} \right) - x - \ln \left( {x - 1} \right) + {x^3}.\)
\(P = F\left( 5 \right) - 4F\left( 3 \right) = 5\ln 4 - 5 - \ln 4 + 125 - 4\left( {3\ln 2 - 3 - \ln 2 + 27} \right) = 120 - 96 = 24.{\rm{ }}\)
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Câu 2:
Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?
Câu 3:
Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng
Câu 4:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 20\,;\,\,20} \right]\) để hàm số \(y = - {x^4} + 6{x^2} + \left( {m - 2} \right)x + 3\) có đúng một điểm cực trị?
Câu 5:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}\)?
Câu 6:
Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là
về câu hỏi!