Câu hỏi:

26/06/2024 222

Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left[ {\log _2^2\left( {4x} \right) - 3{{\log }_{\sqrt 2 }}x - 7} \right] \cdot \sqrt {{3^x} - 3 \cdot {2^{x - 1}}}  \le 0\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐKХĐ: \(x > 0\,;\,\,{3^x} - 3 \cdot {2^{x - 1}} \ge 0\)

• TH1: \({3^x} - {3.2^{x - 1}} = 0 \Leftrightarrow {3^x} = \frac{3}{2}{.2^x} \Leftrightarrow {\left( {\frac{3}{2}} \right)^x} = \frac{3}{2} \Leftrightarrow x = 1\) (thỏa mãn)

• TH2: \(\left\{ {\begin{array}{*{20}{l}}{{3^x} - {{3.2}^{x - 1}} > 0}\\{\log _2^2\left( {4x} \right) - 3{{\log }_{\sqrt 2 }}x - 7 \le 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > 1}\\{{{\left( {2 + {{\log }_2}x} \right)}^2} - 6{{\log }_2}x - 7 \le 0}\end{array}} \right.} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > 1}\\{  \log _2^2x - 2 {{\log }_2}x - 3 \le 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > 1}\\{ - 1 \le  {{\log }_2}x \le 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > 1}\\{\frac{1}{2} \le x \le 8}\end{array} \Leftrightarrow 1 < x \le 8.} \right.} \right.} \right.\)

Từ hai trường hợp, ta suy ra \[x \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\, \ldots \,;\,\,8} \right\}.\]

Vậy có 8 số nguyên \(x\) thỏa mãn đề bài. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP