Câu hỏi:
26/06/2024 58Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Trong 2 giây đầu \({v_1} = a{t^2}\), lại có \(t = 2\,s \Rightarrow {v_1} = 60\,\,{\rm{m}}/{\rm{s}}\)
Nên \(60 = a \cdot {2^2} \Leftrightarrow a = 15\) suy ra \({v_1} = 15{t^2}.\)
Quãng đường vật đi được trong 2 giây đầu là \({s_1} = \int\limits_0^2 {{v_1}\left( t \right){\rm{d}}t} = \int\limits_0^2 {15{t^2}{\rm{d}}t} = 40\,\,(m).\)
Trong giây tiếp theo, thì vận tốc là \({v_2} = mt + n\)
Ta có \(\left\{ {\begin{array}{*{20}{l}}{t = 2 \Rightarrow v = 60\,\,(\;{\rm{m}}/{\rm{s}})}\\{t = 3 \Rightarrow v = 100\,\,(\;{\rm{m}}/{\rm{s}})}\end{array}} \right.\)
Khi đó, ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{2m + n = 60}\\{3m + n = 100}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m = 40}\\{n = - 20}\end{array}} \right.} \right.\) \( \Rightarrow {v_2}\left( t \right) = 40t - 20.\)
Quãng đường vật đi được trong giây tiếp theo là: \[{s_2} = \int\limits_2^3 {{v_2}\left( t \right){\rm{d}}t} = \int\limits_2^3 {\left( {40t - 20} \right){\rm{d}}t} \].
Trong 2 giây cuối, \({v_3} = 100\,\,\;{\rm{m}}/{\rm{s}}\).
Quãng đường vật đi được trong 2 giây cuối là: \({s_3} = \int\limits_3^5 {{v_3}\left( t \right)dt} = \int\limits_3^5 {100dt} = 200\,\,(m).\)
Vậy trong 5 giây đó xe đã đi được quãng đường là: \(40 + 80 + 200 = 320\,\,(\;{\rm{m}}).\) Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Câu 2:
Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?
Câu 3:
Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng
Câu 4:
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 20\,;\,\,20} \right]\) để hàm số \(y = - {x^4} + 6{x^2} + \left( {m - 2} \right)x + 3\) có đúng một điểm cực trị?
Câu 5:
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}\)?
Câu 6:
Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là
Câu 7:
về câu hỏi!