Câu hỏi:

26/06/2024 252

Media VietJack

Cho hình cầu tâm \(O\), bán kính \(R = 5,\) tiếp xúc với mặt phẳng \(\left( P \right).\) Một hình nón tròn xoay có đáy nằm trên \(\left( P \right)\), có chiều cao \(h = 15\) và bán kính đáy bằng \[R.\] Hình cầu và hình nón nằm về một phía đối với mặt phẳng \(\left( P \right).\) Người ta cắt hai hình đó bởi mặt phẳng \(\left( Q \right)\) song song với \(\left( P \right)\) và thu được hai thiết diện có tổng diện tích là S. Gọi \(x\) là khoảng cách giữa \(\left( P \right)\) và \(\left( Q \right),\,\,(0 < x \le 5).\) Biết rằng \(S\) đạt giá trị lớn nhất khi \(x = \frac{a}{b}\) (phân số \(\frac{a}{b}\) tối giản). Giá trị của biểu thức \(T = a + b\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi \(G\) là tâm của thiết diện cắt bởi mặt phẳng \(\left( Q \right)\) và mặt cầu.

Theo giả thiết ta có \(OA = OB = OH = R = 5\) và \(HG = x.\)

GF là bán kính của đường tròn thiết diện. Khi đó \(GF = \sqrt {{5^2} - {{(5 - x)}^2}}  = \sqrt {10x - {x^2}} .\)

Gọi \({S_1}\) là tâm của thiết diện cắt bởi mặt phẳng \((Q)\) và mặt cầu.

Gọi \(M\) là tâm của thiết diện cắt bởi \((Q)\) và hình nón.

Theo giả thiết ta có \(MI = x\) và \(\frac{{SM}}{{SI}} = \frac{{ML}}{{ID}} \Rightarrow ML = \frac{{SM \cdot ID}}{{SI}} = \frac{{\left( {15 - x} \right) \cdot 5}}{{15}} = 5 - \frac{x}{3}{\rm{. }}\)

Gọi \({S_2}\) là diện tích thiết diện của mặt phẳng \((Q)\) và hình nón. Ta có \({S_2} = \pi {\left( {5 - \frac{x}{3}} \right)^2}\)

Do đó \(S = {S_1} + {S_2} = \pi \left[ {10x - {x^2} + {{\left( {5 - \frac{x}{3}} \right)}^2}} \right] = \pi \left( { - \frac{8}{9}{x^2} + \frac{{20}}{3}x + 25} \right)\)

Ta có \(S\) đạt giá trị lớn nhất khi \(f(x) =  - \frac{8}{9}{x^2} + \frac{{20}}{3}x + 25\) đạt giá trị lớn nhất \( \Leftrightarrow x = \frac{{15}}{4}.\)

Theo đề ra ta có: \(x = \frac{a}{b} = \frac{{15}}{4} \Rightarrow T = a + b = 19.\) Chọn B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số  Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Xem đáp án » 26/06/2024 13,203

Câu 2:

Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng

Xem đáp án » 26/06/2024 13,068

Câu 3:

Cho hình phẳng \((H)\) được giới hạn bởi đường cong \(y = \sqrt {{m^2} - {x^2}} \) (\(m\) là tham số khác 0) và trục hoành. Khi \((H)\) quay xung quanh trục hoành được khối tròn xoay có thể tích \[V.\] Có bao nhiêu giá trị nguyên của tham số \(m\) để \(V < 1\,\,000\pi \)?

Xem đáp án » 26/06/2024 8,737

Câu 4:

Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là

Xem đáp án » 26/06/2024 8,140

Câu 5:

Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?

Xem đáp án » 13/07/2024 7,898

Câu 6:

Cho hàm số \[f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{e^x} + 1\quad {\rm{ khi }}x \ge 0}\\{{x^2} - 2x + 2\quad {\rm{ khi }}x < 0}\end{array}} \right..\] Biết \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f(\ln x - 1)}}{x}{\rm{d}}x}  = \frac{a}{b} + ce\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\) và \(\frac{a}{b}\) tối giản. Tính \(a + b + c.\)

Xem đáp án » 12/07/2024 6,826

Câu 7:

Một hội trường A của một trường Đại học có 600 chỗ ngồi và các hàng ghế được xếp theo dạng bậc thang, hàng ghế đầu tiên có 15 chỗ ngồi và cao \[0,3{\rm{ }}m\] so với mặt nền. Mỗi hàng ghế sau có thêm 3 chỗ ngồi và cao hơn \[0,2{\rm{ }}m\] so với hàng ghế ngay trước nó. Hỏi hàng ghế cuối cùng của hội trường đó sẽ cao bao nhiêu mét so với mặt nền?

Xem đáp án » 26/06/2024 4,493
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay