Câu hỏi:

12/07/2024 162

Cho hình nón có chiều cao \(h = 20\), bán kính đáy \(r = 25.\) Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12. Tính diện tích \(S\) của thiết diện đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Giả sử nón đỉnh \(S\), tâm đáy \(O\) và có thiết diện qua đỉnh thỏa mãn yêu cầu bài toán là \(\Delta SAB.\)

Ta có \[SO\] là đường cao của hình nón nên \(SO \bot AB.\)

Gọi \(I\) là trung điểm của \(AB \Rightarrow OI \bot AB.\)

\( \Rightarrow AB \bot \left( {SOI} \right)\,\,(*)\)

Gọi \(H\) là hình chiếu của \(O\) lên \(SI \Rightarrow OH \bot SI.\)

Từ \((*) \Rightarrow AB \bot OH \Rightarrow OH \bot (SAB) \Rightarrow OH = 12.\)

Xét tam giác vuông \[SOI\] có \(\frac{1}{{O{H^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{I^2}}}\)

\( \Rightarrow \frac{1}{{O{I^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{S^2}}} = \frac{1}{{{{12}^2}}} - \frac{1}{{{{20}^2}}} = \frac{1}{{225}} \cdot  \Rightarrow O{I^2} = 225 \Rightarrow OI = 15.{\rm{ }}\)

Xét tam giác vuông SOI có \(SI = \sqrt {O{S^2} + O{I^2}}  = \sqrt {{{20}^2} + {{15}^2}}  = 25.\)

Xét tam giác vuông OIA có \(IA = \sqrt {O{A^2} - O{I^2}}  = \sqrt {{{25}^2} - {{15}^2}}  = 20 \Rightarrow AB = 40.\)

Ta có \(S = {S_{ABC}} = \frac{1}{2} \cdot AB \cdot SI = \frac{1}{2} \cdot 40 \cdot 25 = 500.\)

Đáp án: 500.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP