Câu hỏi:

12/07/2024 85

Cho hình nón có chiều cao \(h = 20\), bán kính đáy \(r = 25.\) Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12. Tính diện tích \(S\) của thiết diện đó.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Giả sử nón đỉnh \(S\), tâm đáy \(O\) và có thiết diện qua đỉnh thỏa mãn yêu cầu bài toán là \(\Delta SAB.\)

Ta có \[SO\] là đường cao của hình nón nên \(SO \bot AB.\)

Gọi \(I\) là trung điểm của \(AB \Rightarrow OI \bot AB.\)

\( \Rightarrow AB \bot \left( {SOI} \right)\,\,(*)\)

Gọi \(H\) là hình chiếu của \(O\) lên \(SI \Rightarrow OH \bot SI.\)

Từ \((*) \Rightarrow AB \bot OH \Rightarrow OH \bot (SAB) \Rightarrow OH = 12.\)

Xét tam giác vuông \[SOI\] có \(\frac{1}{{O{H^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{I^2}}}\)

\( \Rightarrow \frac{1}{{O{I^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{S^2}}} = \frac{1}{{{{12}^2}}} - \frac{1}{{{{20}^2}}} = \frac{1}{{225}} \cdot  \Rightarrow O{I^2} = 225 \Rightarrow OI = 15.{\rm{ }}\)

Xét tam giác vuông SOI có \(SI = \sqrt {O{S^2} + O{I^2}}  = \sqrt {{{20}^2} + {{15}^2}}  = 25.\)

Xét tam giác vuông OIA có \(IA = \sqrt {O{A^2} - O{I^2}}  = \sqrt {{{25}^2} - {{15}^2}}  = 20 \Rightarrow AB = 40.\)

Ta có \(S = {S_{ABC}} = \frac{1}{2} \cdot AB \cdot SI = \frac{1}{2} \cdot 40 \cdot 25 = 500.\)

Đáp án: 500.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số  Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Xem đáp án » 26/06/2024 8,767

Câu 2:

Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng

Xem đáp án » 26/06/2024 7,597

Câu 3:

Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?

Xem đáp án » 13/07/2024 5,745

Câu 4:

Một hội trường A của một trường Đại học có 600 chỗ ngồi và các hàng ghế được xếp theo dạng bậc thang, hàng ghế đầu tiên có 15 chỗ ngồi và cao \[0,3{\rm{ }}m\] so với mặt nền. Mỗi hàng ghế sau có thêm 3 chỗ ngồi và cao hơn \[0,2{\rm{ }}m\] so với hàng ghế ngay trước nó. Hỏi hàng ghế cuối cùng của hội trường đó sẽ cao bao nhiêu mét so với mặt nền?

Xem đáp án » 26/06/2024 4,023

Câu 5:

Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là

Xem đáp án » 26/06/2024 2,444

Câu 6:

Ở ruồi giấm, xét 3 cặp gen: A, a; B, b và D, d; mỗi gen quy định 1 tính trạng, các alen trội là trội hoàn toàn. Phép lai P: 2 ruồi đều có kiểu hình trội về 3 tính trạng giao phối với nhau, tạo ra F1 gồm 24 loại kiểu gen và có 1,25% số ruồi mang kiểu hình lặn về 3 tính trạng nhưng kiểu hình này chỉ có ở ruồi đực. Theo lí thuyết, trong tổng số ruồi cái có kiểu hình trội về 3 tính trạng ở F1, số ruồi có 5 alen tri chiếm tỉ lệ là bao nhiêu?

Xem đáp án » 24/07/2024 2,411

Câu 7:

Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 20\,;\,\,20} \right]\) để hàm số \(y =  - {x^4} + 6{x^2} + \left( {m - 2} \right)x + 3\) có đúng một điểm cực trị?

Xem đáp án » 26/06/2024 2,294

Bình luận


Bình luận