Câu hỏi:

12/07/2024 143

Cho đồ thị  Có bao nhiêu số nguyên \(b \in \left( { - 10\,;\,\,10} \right)\) để có đúng một tiếp tuyến của \((C)\) đi qua điểm \(B\left( {0\,;\,\,b} \right)\,\,?\)\((C):y = {x^3} - 3{x^2}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \({M_0}\left( {{x_0};x_0^3 - 3x_0^2} \right)\) là tiếp điểm.

Tiếp tuyến \(\Delta \) của \((C)\) tại \({M_0}\) có dạng \(y = \left( {3x_0^2 - 6{x_0}} \right)\left( {x - {x_0}} \right) + x_0^3 - 3x_0^2\)

\(\Delta \) qua \(B\left( {0\,;\,\,b} \right)\, \Leftrightarrow b = \left( {3x_0^2 - 6{x_0}} \right)\left( {0 - {x_0}} \right) + x_0^3 - 3x_0^2 \Leftrightarrow  - b = 2x_0^3 - 3x_0^2(*)\)

Có đúng một tiếp tuyến của \((C)\) đi qua điểm \(B\left( {0\,;\,\,b} \right)\, \Leftrightarrow (*)\) có đúng một nghiệm \({x_0}.\)

Đặt \[g\left( x \right) = 2{x^3} - 3{x^2}\,;\,\,g'\left( x \right) = 6{x^2} - 6x\,;\,\,g'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\end{array}} \right..\]

Ta có bảng biến thiên của hàm \(g\left( x \right)\)

Media VietJack

Dựa vào bảng biến thiên suy ra phương trình \((*)\) có đúng 1 nghiệm \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - b > 0}\\{ - b <  - 1}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{b < 0}\\{b > 1}\end{array}} \right.} \right..\)

Vì \(b\) nguyên và \(b \in \left( { - 10\,;\,\,10} \right)\) nên \(b \in \left\{ { - 9\,;\,\, - 8\,;\,\, \ldots \,;\,\, - 1\,;\,\,2\,;\,\,3\,;\,\, \ldots \,;\,\,9} \right\}\), suy ra 17 giá trị của \[b.\]

Đáp án: 17.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP