Câu hỏi:

12/07/2024 189

Cho phương trình \({\log _9}{x^2} - {\log _3}\left( {5x - 1} \right) =  - {\log _3}m\) (\(m\) là tham số thực). Có tất cả bao nhiêu giá trị nguyên của \(m\) để phương trình đã cho có nghiệm?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{{x^2} > 0}\\{5x - 1 > 0}\\{m > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x > \frac{1}{5}}\\{m > 0}\end{array}} \right.} \right..\)

Ta có \({\log _9}{x^2} - {\log _3}\left( {5x - 1} \right) =  - {\log _3}m \Leftrightarrow {\log _{{3^2}}}{x^2} - {\log _3}\left( {5x - 1} \right) =  - {\log _3}m\)

\( \Leftrightarrow {\log _3}x - {\log _3}\left( {5x - 1} \right) = {\log _3}\frac{1}{m}\)

\( \Leftrightarrow {\log _3}\frac{x}{{5x - 1}} = {\log _3}\frac{1}{m} \Leftrightarrow \frac{x}{{5x - 1}} = \frac{1}{m}\) có nghiệm

Khi và chỉ khi \(\frac{1}{m} > \frac{1}{5} \Leftrightarrow 0 < m < 5\) (dựa vào bảng biến thiên).

Mà \(m \in \mathbb{Z}\) suy ra \[m \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4} \right\}.\]

Đáp án: 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP