Trên tập hợp số phức, cho phương trình \({z^2} + az + b = 0\) (với \[a,\,\,b\] là số thực). Biết rằng hai số phức \(w + 1 + i\) và \(2w - 1 + 5i\) là hai nghiệm của phương trình đã cho. Tính tổng \(a + b.\)
Trên tập hợp số phức, cho phương trình \({z^2} + az + b = 0\) (với \[a,\,\,b\] là số thực). Biết rằng hai số phức \(w + 1 + i\) và \(2w - 1 + 5i\) là hai nghiệm của phương trình đã cho. Tính tổng \(a + b.\)
Quảng cáo
Trả lời:
Ta có \({z^2} + az + b = 0\); \[w = x + yi\,\,\left( {x,\,\,y \in \mathbb{R}} \right){\rm{. }}\]
Phương trình (1) có 2 nghiệm phức là:
\({z_1} = w + 1 + i = x + 1 + \left( {y + 1} \right)i\); \({z_2} = 2w - 1 + 5i = 2x - 1 + \left( {2y + 5} \right)i\)
Vì \({z_1},{z_2}\) là 2 nghiệm của (1) suy ra: \({z_1} = {\bar z_2} \Rightarrow x + 1 + \left( {y + 1} \right)i = 2x - 1 - \left( {2y + 5} \right)i\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x + 1 = 2x - 1}\\{y + 1 = - \left( {2y + 5} \right)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = - 2}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{z_1} = 3 - i}\\{{z_2} = 3 + i}\end{array}} \right.} \right.} \right.\)
Theo Viète, ta có \(\left\{ {\begin{array}{*{20}{l}}{{z_1} + {z_2} = - a}\\{{z_1},{z_2} = b}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 6}\\{b = 10}\end{array} \Rightarrow a + b = 4} \right.} \right..\)
Đáp án: 4.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x = - \frac{d}{c}.\)
Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} = - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)
Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)
Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)
Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.
Lời giải
Ta có: \(\overrightarrow {AB} = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC} = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD} = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).
\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 = - 24\).
Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.