Câu hỏi:

13/07/2024 245

Trong không gian  cho mặt cầu \((S):{x^2} + {y^2} + {z^2} = 9\) và điểm \(M\left( {{x_0};\,\,{y_0};\,\,{z_0}} \right)\) thuộc đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 1 + 2t}\\{z = 2 - 3t}\end{array}} \right.\) Ba điểm \[A,\,\,B,\,\,C\] phân biệt cùng thuộc một mặt cầu sao cho \[MA,\,\,MB,\,\,MC\] là tiếp tuyến của mặt cầu. Biết rằng mặt phẳng \((ABC)\) đi qua \(D\left( {1;\,\,1;\,\,2} \right).\) Giá trị của biểu thức \(T = x_0^2 + y_0^2 + z_0^2\) bằng\[Oxyz,\]

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mặt cầu \((S)\) có tâm \(O\left( {0\,;\,\,0\,;\,\,0} \right)\) và bán kính \[R.\]

Gọi \(M\left( {1 + {t_0}\,;\,\,1 + 2{t_0}\,;\,\,2 - 3{t_0}} \right) \in d.\)

Giả sử \(T\left( {x\,;\,\,y\,;\,\,z} \right) \in (S)\) là một tiếp điểm của tiếp tuyến \[MT\] với mặt cầu \((S).\)

Khi đó: \(O{T^2} + M{T^2} = O{M^2}\)

\( \Leftrightarrow 9 + {\left[ {x - \left( {1 + {t_0}} \right)} \right]^2} + {\left[ {y - \left( {1 + 2{t_0}} \right)} \right]^2} + {\left[ {z - \left( {2 - 3{t_0}} \right)} \right]^2} = {\left( {1 + {t_0}} \right)^2} + {\left( {1 + 2{t_0}} \right)^2} + {\left( {2 - 3{t_0}} \right)^2}\)

\( \Leftrightarrow 9 + {x^2} + {y^2} + {z^2} - 2x\left( {1 + {t_0}} \right) - 2y\left( {1 + 2{t_0}} \right) - 2z\left( {2 - 3{t_0}} \right) = 0\)

\( \Leftrightarrow \left( {1 + {t_0}} \right)x + \left( {1 + 2{t_0}} \right)y + \left( {2 - 3{t_0}} \right)z - 9 = 0.\) (vì \({x^2} + {y^2} + {z^2} = O{T^2} = 9\))

Suy ra phương trình mặt phẳng \(\left( {ABC} \right)\) có dạng: \(\left( {1 + {t_0}} \right)x + \left( {1 + 2{t_0}} \right)y + \left( {2 - 3{t_0}} \right)z - 9 = 0\)

Do \(D\left( {1\,;\,\,1\,;\,\,2} \right) \in \left( {ABC} \right)\) nên \[1 + {t_0} + 1 + 2{t_0} + 2\left( {2 - 3{t_0}} \right) - 9 = 0 \Leftrightarrow {t_0} =  - 1 \Rightarrow M = \left( {0\,;\,\, - 1\,;\,\,5} \right).\]

Vậy \(T = {0^2} + {\left( { - 1} \right)^2} + {5^2} = 26.\)

Đáp án: 26.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng

Xem đáp án » 26/06/2024 11,083

Câu 2:

Cho hàm số  Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Xem đáp án » 26/06/2024 10,473

Câu 3:

Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?

Xem đáp án » 13/07/2024 7,137

Câu 4:

Cho hình phẳng \((H)\) được giới hạn bởi đường cong \(y = \sqrt {{m^2} - {x^2}} \) (\(m\) là tham số khác 0) và trục hoành. Khi \((H)\) quay xung quanh trục hoành được khối tròn xoay có thể tích \[V.\] Có bao nhiêu giá trị nguyên của tham số \(m\) để \(V < 1\,\,000\pi \)?

Xem đáp án » 26/06/2024 6,846

Câu 5:

Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là

Xem đáp án » 26/06/2024 6,301

Câu 6:

Cho hàm số \[f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{e^x} + 1\quad {\rm{ khi }}x \ge 0}\\{{x^2} - 2x + 2\quad {\rm{ khi }}x < 0}\end{array}} \right..\] Biết \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f(\ln x - 1)}}{x}{\rm{d}}x}  = \frac{a}{b} + ce\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\) và \(\frac{a}{b}\) tối giản. Tính \(a + b + c.\)

Xem đáp án » 12/07/2024 4,472

Câu 7:

Một hội trường A của một trường Đại học có 600 chỗ ngồi và các hàng ghế được xếp theo dạng bậc thang, hàng ghế đầu tiên có 15 chỗ ngồi và cao \[0,3{\rm{ }}m\] so với mặt nền. Mỗi hàng ghế sau có thêm 3 chỗ ngồi và cao hơn \[0,2{\rm{ }}m\] so với hàng ghế ngay trước nó. Hỏi hàng ghế cuối cùng của hội trường đó sẽ cao bao nhiêu mét so với mặt nền?

Xem đáp án » 26/06/2024 4,293