Câu hỏi:
13/07/2024 158
Người ta thiết kế một chiếc thùng hình trụ có thể tích \[V\] cho trước. Biết rằng chi phí làm mặt đáy và nắp của thùng bằng nhau và gấp 3 lần chi phí làm mặt xung quanh của thùng (chi phí cho một đơn vị diện tích). Gọi \[h,\,\,R\] lần lượt là chiều cao và bán kính đáy của thùng. Tỉ số \(\frac{h}{R}\) bằng bao nhiêu để chi phí sản xuất chiếc thùng là thấp nhất?
Người ta thiết kế một chiếc thùng hình trụ có thể tích \[V\] cho trước. Biết rằng chi phí làm mặt đáy và nắp của thùng bằng nhau và gấp 3 lần chi phí làm mặt xung quanh của thùng (chi phí cho một đơn vị diện tích). Gọi \[h,\,\,R\] lần lượt là chiều cao và bán kính đáy của thùng. Tỉ số \(\frac{h}{R}\) bằng bao nhiêu để chi phí sản xuất chiếc thùng là thấp nhất?
Quảng cáo
Trả lời:
Giả sử chi phi sản xuất mỗi đơn vị diện tích cho bề mặt xung quanh là \(a\) đồng thì chi phi sản xuất cho mỗi đơn vị diện tích của mặt đáy là \[3a\] đồng.
Chi phí sản xuất thùng là \(S = 2\pi r\ell \cdot a + 2\pi {r^2}.3a = 2\pi rh \cdot a + 2\pi \cdot {r^2} \cdot 3a\)
\( = 2a\pi r \cdot \frac{V}{{\pi {r^2}}} + 6a\pi {r^2} = \frac{{2aV}}{r} + 6a\pi {r^2} = 2a\left( {\frac{V}{r} + 3\pi {r^2}} \right) = 2a \cdot f\left( r \right)\).
Chi phí vật liệu sản xuất thùng nhỏ nhất khi \(f\left( r \right) = \frac{V}{r} + 3\pi {r^2}\) đạt giá trị nhỏ nhất.
Ta có \(f'\left( r \right) = \frac{{ - V}}{{{r^2}}} + 6\pi r = 0 \Leftrightarrow r = \sqrt[3]{{\frac{V}{{6\pi }}}}\).
Bảng biến thiên
Vậy \(\min f\left( r \right) \Leftrightarrow r = \sqrt[3]{{\frac{V}{{6\pi }}}} \Rightarrow \frac{h}{r} = \frac{V}{{\pi {r^3}}} = \frac{V}{{\pi \cdot {{\left( {\sqrt[3]{{\frac{V}{{6\pi }}}}} \right)}^3}}} = 6.{\rm{ }}\)
Đáp án: 6.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x = - \frac{d}{c}.\)
Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} = - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)
Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)
Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)
Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.
Lời giải
Ta có: \(\overrightarrow {AB} = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC} = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD} = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).
\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 = - 24\).
Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.