Câu hỏi:
12/07/2024 144
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a,{\rm{ }}SAB\] là tam giác đều và \(\left( {SAB} \right)\) vuông góc với \(\left( {ABCD} \right)\). Với \(\varphi \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right)\). Khi đó \(\cos \varphi \) bằng bao nhiêu?
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \[a,{\rm{ }}SAB\] là tam giác đều và \(\left( {SAB} \right)\) vuông góc với \(\left( {ABCD} \right)\). Với \(\varphi \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right)\). Khi đó \(\cos \varphi \) bằng bao nhiêu?
Quảng cáo
Trả lời:
Nhận xét: Ta có thể giải bài toán với cạnh hình vuông \(a = 1.\)
Gọi \[O,\,\,M\] lần lượt là trung điểm của \[AB,\,\,CD.\]
Vì \[SAB\] là tam giác đều và \(\left( {SAB} \right)\) vuông góc với \(\left( {ABCD} \right),\) \(SO \bot AB \Rightarrow SO \bot \left( {ABCD} \right).\)
Xét tam giác SOA vuông tại \(O\)
\( \Rightarrow SO = \sqrt {S{A^2} - O{A^2}} = \sqrt {{1^2} - \frac{1}{{{2^2}}}} = \frac{{\sqrt 3 }}{2}.\)Xét hệ trục Oxyz có \(O\left( {0\,;\,\,0\,;\,\,0} \right),\,\,M\left( {1\,;\,\,0\,;\,\,0} \right),\,\,A\left( {0\,;\,\,\frac{1}{2}\,;\,\,0} \right),\,\,S\left( {0\,;\,\,0\,;\,\,\frac{{\sqrt 3 }}{2}} \right).\)
Khi đó: \(C\left( {1\,;\,\,\frac{{ - 1}}{2}\,;\,\,0} \right),\,\,D\left( {1\,;\,\,\frac{1}{2}\,;\,\,0} \right).\)
Mặt phẳng \(\left( {SAC} \right)\) có vectơ pháp tuyến \({\vec n_1} = \left[ {\overrightarrow {SC} ,\,\,\overrightarrow {AC} } \right] = \left( {\frac{{ - \sqrt 3 }}{2}\,;\,\,\frac{{ - \sqrt 3 }}{2}\,;\,\,\frac{{ - 1}}{2}} \right).\)
Mặt phẳng \(\left( {SAD} \right)\) có vectơ pháp tuyến \({\vec n_2} = \left[ {\overrightarrow {SC} ,\,\,\overrightarrow {CD} } \right] = \left( {\frac{{\sqrt 3 }}{2}\,;\,\,0\,;\,\,1} \right).\)
Vậy \(\cos \varphi = \frac{{\left| {{{\vec n}_1} \cdot {{\vec n}_2}} \right|}}{{\left| {{{\vec n}_1}} \right| \cdot \left| {{{\vec n}_2}} \right|}} = \frac{5}{7}.\) Đáp án: \(\frac{5}{7}.\)- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x = - \frac{d}{c}.\)
Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} = - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)
Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)
Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)
Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.
Lời giải
Ta có: \(\overrightarrow {AB} = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC} = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD} = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).
\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 = - 24\).
Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.