Câu hỏi:

12/07/2024 145

Cho hàm số \(y = f\left( x \right)\) và \(f\left( x \right) > 0,\,\,\forall x \in \mathbb{R}.\) Biết hàm số \(y = f'\left( x \right)\) có bảng biến thiên như hình vẽ và \(f\left( {\frac{1}{2}} \right) = \frac{{137}}{{16}}.\)
Media VietJack

Có bao nhiêu giá trị nguyên của \(m \in \left[ { - 2020\,;\,\,2020} \right]\) để hàm số \(g\left( x \right) = {e^{ - {x^2} + \,4mx\, - \,5}} \cdot f\left( x \right)\) đồng biến trên khoảng \(\left( { - 1;\frac{1}{2}} \right)\,?\)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(g'\left( x \right) = \left( { - 2x + 4m} \right){e^{ - {x^2} + \,4mx - 5}} \cdot f\left( x \right) + {e^{ - {x^2} + \,4mx - 5}} \cdot f'\left( x \right)\)

\( \Leftrightarrow g'\left( x \right) = \left[ {\left( { - 2x + 4m} \right) \cdot f\left( x \right) + f'\left( x \right)} \right] \cdot {e^{ - {x^2} + \,4mx\, - \,5}}\)

Yêu cầu bài toán \( \Leftrightarrow g'\left( x \right) \ge 0\,,\,\,\forall x \in \left( { - 1\,;\,\,\frac{1}{2}} \right)\)

\( \Leftrightarrow \left( { - 2x + 4m} \right) \cdot f\left( x \right) + f'\left( x \right) \ge 0\,,\,\,\forall x \in \left( { - 1\,;\,\,\frac{1}{2}} \right)\) (vì \({e^{ - {x^2} + 4mx - 5}} > 0)\)

\( \Leftrightarrow  - 2x + 4m \ge  - \frac{{f'\left( x \right)}}{{f\left( x \right)}},\,\,\forall x \in \left( { - 1\,;\,\,\frac{1}{2}} \right)\) (vì \(f\left( x \right) > 0\,,\,\,\forall x \in \mathbb{R})\)

\( \Leftrightarrow 4m \ge 2x - \frac{{f'\left( x \right)}}{{f\left( x \right)}},\,\,\forall x \in \left( { - 1\,;\,\,\frac{1}{2}} \right)\)

Xét \(h\left( x \right) = 2x - \frac{{f'\left( x \right)}}{{f\left( x \right)}},\,\,\forall x \in \left( { - 1\,;\,\,\frac{1}{2}} \right).\)

Ta có \[h'\left( x \right) = 2 - \frac{{f''\left( x \right) \cdot f\left( x \right) - {{\left[ {f'\left( x \right)} \right]}^2}}}{{{f^2}\left( x \right)}}.\]

Mà \(\left\{ {\begin{array}{*{20}{l}}{f''\left( x \right) < 0}\\{f\left( x \right) > 0}\end{array},\,\,\forall x \in \left( { - 1\,;\,\,\frac{1}{2}} \right) \Rightarrow \frac{{f''\left( x \right) \cdot f\left( x \right) - {{\left[ {f'\left( x \right)} \right]}^2}}}{{{f^2}\left( x \right)}} < 0,\,\,\forall x \in \left( { - 1\,;\,\,\frac{1}{2}} \right)} \right.{\rm{. }}\)

Từ đó suy ra \(h'\left( x \right) > 0,\,\,\forall x \in \left( { - 1\,;\,\,\frac{1}{2}} \right).\) Vậy hàm số \(h(x)\) đồng biến trên \(\left( { - 1\,;\,\,\frac{1}{2}} \right)\)

Ta có bảng biến thiên:

Media VietJack

Do đó, điều kiện \((*) \Leftrightarrow 4m \ge h\left( {\frac{1}{2}} \right) \Leftrightarrow 4m \ge 2 \cdot \frac{1}{2} - \frac{{f'\left( {\frac{1}{2}} \right)}}{{f\left( {\frac{1}{2}} \right)}} \Leftrightarrow 4m \ge \frac{{225}}{{137}} \Leftrightarrow m \ge \frac{{225}}{{548}}.\)

Lại có \(\left\{ {\begin{array}{*{20}{l}}{m \in \mathbb{Z}}\\{m \in \left[ { - 2020\,;\,\,2020} \right]}\end{array} \Rightarrow m \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\, \ldots \,;\,\,2020} \right\}} \right..\)

Vậy có 2020 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán.

Đáp án: 2020.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng

Xem đáp án » 26/06/2024 11,496

Câu 2:

Cho hàm số  Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Xem đáp án » 26/06/2024 11,080

Câu 3:

Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là

Xem đáp án » 26/06/2024 7,544

Câu 4:

Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?

Xem đáp án » 13/07/2024 7,466

Câu 5:

Cho hình phẳng \((H)\) được giới hạn bởi đường cong \(y = \sqrt {{m^2} - {x^2}} \) (\(m\) là tham số khác 0) và trục hoành. Khi \((H)\) quay xung quanh trục hoành được khối tròn xoay có thể tích \[V.\] Có bao nhiêu giá trị nguyên của tham số \(m\) để \(V < 1\,\,000\pi \)?

Xem đáp án » 26/06/2024 7,153

Câu 6:

Cho hàm số \[f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{e^x} + 1\quad {\rm{ khi }}x \ge 0}\\{{x^2} - 2x + 2\quad {\rm{ khi }}x < 0}\end{array}} \right..\] Biết \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f(\ln x - 1)}}{x}{\rm{d}}x}  = \frac{a}{b} + ce\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\) và \(\frac{a}{b}\) tối giản. Tính \(a + b + c.\)

Xem đáp án » 12/07/2024 5,412

Câu 7:

Một hội trường A của một trường Đại học có 600 chỗ ngồi và các hàng ghế được xếp theo dạng bậc thang, hàng ghế đầu tiên có 15 chỗ ngồi và cao \[0,3{\rm{ }}m\] so với mặt nền. Mỗi hàng ghế sau có thêm 3 chỗ ngồi và cao hơn \[0,2{\rm{ }}m\] so với hàng ghế ngay trước nó. Hỏi hàng ghế cuối cùng của hội trường đó sẽ cao bao nhiêu mét so với mặt nền?

Xem đáp án » 26/06/2024 4,348
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua