Câu hỏi:
12/07/2024 278Một cửa hàng chuyên về cà phê, có sẵn 75 kg cà phê Colombia nguyên chất và 120 kg cà phê thương hiệu của cửa hàng. Những thứ này sẽ được pha thành các gói cà phê 1 kg như sau: Một gói tiêu chuẩn có chứa 250 g cà phê Colombia nguyên chất và 750 g cà phê thương hiệu; một gói cao cấp chứa 500 g cà phê Colombia nguyên chất và 500 g cà phê thương hiệu.
Quảng cáo
Trả lời:
Đổi 75 kg = 75 000 g; 120 kg = 120 000 g.
Hệ bất phương trình bậc nhất mô tả số lượng gói có thể có của mỗi loại là:
hay
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử tình huống được mô tả bởi hình vẽ dưới đây với C là vị trí mắt của người quan sát, DB = 4 m là chiều cao của bức tranh, AD = 3 m là khoảng cách từ mép dưới của bức tranh đến mắt người quan sát.
Giả sử AC = x (m) là khoảng cách từ người quan sát đến tường, x > 0.
Khi đó, ta có: và
Áp dụng hệ quả định lí Cosin vào tam giác BCD, ta có:
Hay
Với θ ∈ (0°; 90°), để góc nhìn θ lớn nhất thì cosθ nhỏ nhất.
Đặt hàm số xét trên khoảng (0; +∞).
Khi đó, ta cần tìm giá trị nhỏ nhất của f(x) trên (0; +∞).
Ta có
f’(x) = 0 ⇔ 16x3 – 336x = 0 ⇔ x = 0 (loại) hoặc x2 = 21
(do x ∈ (0; +∞)).
Lập bảng biến thiên của hàm số trên khoảng (0; +∞).
|
0 |
|
|
|
+∞ |
|
|
– |
0 |
+ |
|
|
|
|
|
|
1
|
Từ bảng biến thiên, ta có khi
Vậy người quan sát phải đứng cách tường mét để có được tầm nhìn thuận lợi nhất (tức là, có góc nhìn θ lớn nhất).
Lời giải
Gọi x và y lần lượt là số đại diện bán hàng ở Hà Nội và Thành phố Hồ Chí Minh được cử đến dự cuộc họp bán hàng ở Đà Nẵng.
Tổng chi phí vé máy bay là: 2x + 2,4x (nghìn đồng).
Hệ bất phương trình ràng buộc x và y là
Miền nghiệm của hệ bất phương trình này là miền tứ giác ABCD được tô màu như hình vẽ dưới đây với đường thẳng d: x + y = 40.
Các điểm cực biên là: A(18; 22), B(28; 22), C(28; 16), D(24; 16).
Bài toán yêu cầu tìm giá trị nhỏ nhất của F(x; y) trên miền nghiệm của hệ bất phương trình trên. Ta biết rằng, F(x; y) đạt giá trị nhỏ nhất tại một trong các đỉnh của tứ giác. Tính giá trị của F(x; y) tại các đỉnh của tứ giác ta được:
F(18; 22) = 2.18 + 2,4.22 = 88,8;
F(28; 22) = 2.28 + 2,4.22 = 108,8;
F(28; 16) = 2.28 + 2,4.16 = 94,4;
F(24; 16) = 2.24 + 2,4.16 = 86,4.
Giá trị nhỏ nhất của F(x; y) bằng 86,4 tại điểm cực biên B(24; 16). Phương án tối ưu là (24; 16).
Vậy cần cử 24 đại diện bán hàng ở Hà Nội và 16 đại diện bán hàng ở Thành phố Hồ Chí Minh đến dự cuộc họp bán hàng ở Đà Nẵng để tổng chi phí vé máy bay là nhỏ nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận