Câu hỏi:

12/07/2024 3,451

Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0).

a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.

b) Tính chiều cao AH của tứ diện ABCD.

c) Viết phương trình mặt phẳng (α) chứa AB và song song với CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có \(\overrightarrow {BC} = \left( { - 1;2; - 7} \right),\overrightarrow {BD} = \left( {0;4; - 6} \right)\), \(\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = \left( {16; - 6; - 4} \right)\)

Mặt phẳng (BCD) đi qua B(1; 0; 6) và nhận \(\overrightarrow n = \frac{1}{2}\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = \left( {8; - 3; - 2} \right)\) có phương trình là 8(x – 1) – 3y – 2(z – 6) = 0 Û 8x – 3y – 2z + 4 = 0.

Thay tọa độ điểm A vào phương trình mặt phẳng (BCD) ta được:

8.(−2) – 3.6 – 2.3 + 4 = −36 ≠ 0.

Do đó A Ï (BCD). Suy ra ABCD là một tứ diện.

b) Ta có \(AH = d\left( {A,\left( {BCD} \right)} \right) = \frac{{\left| {8.\left( { - 2} \right) - 3.6 - 2.3 + 4} \right|}}{{\sqrt {{8^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{36}}{{\sqrt {77} }}\).

c) Ta có \(\overrightarrow {AB} = \left( {3; - 6;3} \right)\)\(\overrightarrow {CD} = \left( {1;2;1} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( { - 12;0;12} \right)\).

Mặt phẳng (α) đi qua A(−2; 6; 3) và nhận \(\overrightarrow n  = - \frac{1}{{12}}\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( {1;0; - 1} \right)\) có phương trình là (x + 2) – (z – 3) = 0 Û x – z + 5 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có A(70; 0; 0), B(70; 0; −60), C(70; 80; 0), D(50; 0; 0).

b) Ta có \(\overrightarrow {AB} = \left( {0;0; - 60} \right),\overrightarrow {AC} = \left( {0;80;0} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {4800;0;0} \right)\).

Mặt phẳng (ABC) đi qua A(70; 0; 0), nhận \(\overrightarrow n = \frac{1}{{4800}}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1;0;0} \right)\) có phương trình là x – 70 = 0.

\(\overrightarrow {AC} = \left( {0;80;0} \right)\), \(\overrightarrow {AD} = \left( { - 20;0;0} \right)\), \(\left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right] = \left( {0;0;1600} \right)\).

Mặt phẳng (ACD) đi qua A(70; 0; 0), nhận \(\overrightarrow n = \frac{1}{{1600}}\left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right] = \left( {0;0;1} \right)\) có phương trình là z = 0.

c) Đường thẳng AC đi qua A(70; 0; 0) và nhận \(\overrightarrow a = \frac{1}{{80}}\overrightarrow {AC} = \left( {0;1;0} \right)\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 70\\y = t\\z = 0\end{array} \right.\).

d) \(d\left( {M,\left( {ABC} \right)} \right) = \frac{{\left| {0 - 70} \right|}}{{\sqrt {{1^2}} }} = 70\).

Lời giải

Cho hình hộp chữ nhật OABC.O'A'B'C', với O là gốc tọa độ, A(2; 0; 0), C(0; 6; 0), O'(0; 0; 4). Viết phương trình: a) Mặt phẳng (O'AC); b) Đường thẳng CO'; c) Mặt cầu đi qua các đỉnh của hình hộp. (ảnh 1)

a) Mặt phẳng đoạn chắn của (O'AC) là \(\frac{x}{2} + \frac{y}{6} + \frac{z}{4} = 1\) Û 6x + 2y + 3z – 12 = 0.

b) Đường thẳng CO' đi qua C(0; 6; 0) nhận \(\frac{1}{2}\overrightarrow {CO'} = \left( {0; - 3;2} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 0\\y = 6 - 3t\\z = 2t\end{array} \right.\).

c) Mặt cầu đi qua các đỉnh của hình hộp có tâm I là trung điểm của O'B và bán kính IO'.

Có B(2; 6; 0), O'(0; 0; 4). Suy ra I(1; 3; 2) và \(IO' = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 3} \right)}^2} + {{\left( {4 - 2} \right)}^2}} = \sqrt {14} \).

Phương trình mặt cầu là: (x – 1)2 + (y – 3)2 + (z – 2)2 = 14.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP