Câu hỏi:

12/07/2024 6,097

Phần mềm của máy tiện kĩ thuật số CNC (Computer Numerical Control) đang biểu diễn một chi tiết máy như Hình 2.

a) Tìm tọa độ các điểm A, B, C, D.

b) Viết phương trình mặt phẳng (ABC) và mặt phẳng (ACD).

c) Viết phương trình tham số của đường thẳng AC.

d) Cho biết đầu mũi tiện đang đặt tại điểm M(0; 60; 40). Tính khoảng cách từ M đến mặt phẳng (ABC).

Phần mềm của máy tiện kĩ thuật số CNC (Computer Numerical Control) đang biểu diễn một chi tiết máy như Hình 2. a) Tìm tọa độ các điểm A, B, C, D. b) Viết phương trình mặt phẳng (ABC) và mặt phẳng (ACD). c) Viết phương trình tham số của  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có A(70; 0; 0), B(70; 0; −60), C(70; 80; 0), D(50; 0; 0).

b) Ta có \(\overrightarrow {AB} = \left( {0;0; - 60} \right),\overrightarrow {AC} = \left( {0;80;0} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {4800;0;0} \right)\).

Mặt phẳng (ABC) đi qua A(70; 0; 0), nhận \(\overrightarrow n = \frac{1}{{4800}}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1;0;0} \right)\) có phương trình là x – 70 = 0.

\(\overrightarrow {AC} = \left( {0;80;0} \right)\), \(\overrightarrow {AD} = \left( { - 20;0;0} \right)\), \(\left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right] = \left( {0;0;1600} \right)\).

Mặt phẳng (ACD) đi qua A(70; 0; 0), nhận \(\overrightarrow n = \frac{1}{{1600}}\left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right] = \left( {0;0;1} \right)\) có phương trình là z = 0.

c) Đường thẳng AC đi qua A(70; 0; 0) và nhận \(\overrightarrow a = \frac{1}{{80}}\overrightarrow {AC} = \left( {0;1;0} \right)\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 70\\y = t\\z = 0\end{array} \right.\).

d) \(d\left( {M,\left( {ABC} \right)} \right) = \frac{{\left| {0 - 70} \right|}}{{\sqrt {{1^2}} }} = 70\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình hộp chữ nhật OABC.O'A'B'C', với O là gốc tọa độ, A(2; 0; 0), C(0; 6; 0), O'(0; 0; 4). Viết phương trình: a) Mặt phẳng (O'AC); b) Đường thẳng CO'; c) Mặt cầu đi qua các đỉnh của hình hộp. (ảnh 1)

a) Mặt phẳng đoạn chắn của (O'AC) là \(\frac{x}{2} + \frac{y}{6} + \frac{z}{4} = 1\) Û 6x + 2y + 3z – 12 = 0.

b) Đường thẳng CO' đi qua C(0; 6; 0) nhận \(\frac{1}{2}\overrightarrow {CO'} = \left( {0; - 3;2} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 0\\y = 6 - 3t\\z = 2t\end{array} \right.\).

c) Mặt cầu đi qua các đỉnh của hình hộp có tâm I là trung điểm của O'B và bán kính IO'.

Có B(2; 6; 0), O'(0; 0; 4). Suy ra I(1; 3; 2) và \(IO' = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 3} \right)}^2} + {{\left( {4 - 2} \right)}^2}} = \sqrt {14} \).

Phương trình mặt cầu là: (x – 1)2 + (y – 3)2 + (z – 2)2 = 14.

Lời giải

a) Ta có \(\overrightarrow {BC} = \left( { - 1;2; - 7} \right),\overrightarrow {BD} = \left( {0;4; - 6} \right)\), \(\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = \left( {16; - 6; - 4} \right)\)

Mặt phẳng (BCD) đi qua B(1; 0; 6) và nhận \(\overrightarrow n = \frac{1}{2}\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = \left( {8; - 3; - 2} \right)\) có phương trình là 8(x – 1) – 3y – 2(z – 6) = 0 Û 8x – 3y – 2z + 4 = 0.

Thay tọa độ điểm A vào phương trình mặt phẳng (BCD) ta được:

8.(−2) – 3.6 – 2.3 + 4 = −36 ≠ 0.

Do đó A Ï (BCD). Suy ra ABCD là một tứ diện.

b) Ta có \(AH = d\left( {A,\left( {BCD} \right)} \right) = \frac{{\left| {8.\left( { - 2} \right) - 3.6 - 2.3 + 4} \right|}}{{\sqrt {{8^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{36}}{{\sqrt {77} }}\).

c) Ta có \(\overrightarrow {AB} = \left( {3; - 6;3} \right)\)\(\overrightarrow {CD} = \left( {1;2;1} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( { - 12;0;12} \right)\).

Mặt phẳng (α) đi qua A(−2; 6; 3) và nhận \(\overrightarrow n  = - \frac{1}{{12}}\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( {1;0; - 1} \right)\) có phương trình là (x + 2) – (z – 3) = 0 Û x – z + 5 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay