Câu hỏi:

24/07/2024 113 Lưu

Cho một vật có khối lượng m = 200 g tham gia đồng thời hai dao động điều hòa cùng phương, cùng tần số với phương trình lần lượt là \[{x_1} = \sqrt 3 \sin \left( {20t + \frac{\pi }{2}} \right){\mkern 1mu} {\mkern 1mu} cm\] và \[{x_2} = 2\cos \left( {20t + \frac{{5\pi }}{6}} \right){\mkern 1mu} {\mkern 1mu} cm\]. Độ lớn của hợp lực tác dụng lên vật tại thời điểm \[t = \frac{\pi }{{120}}{\mkern 1mu} {\mkern 1mu} s\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có phương trình dao động: \[{x_1} = \sqrt 3 \sin \left( {20t + \frac{\pi }{2}} \right) = \sqrt 3 \cos \left( {20t} \right)\]

Sử dụng máy tính bỏ túi, ta có: \[\sqrt 3 \angle 0 + 2\angle \frac{{5\pi }}{6} = 1\angle \frac{\pi }{2} \Rightarrow \]\(\left\{ {\begin{array}{*{20}{l}}{A = 1{\mkern 1mu} {\mkern 1mu} \left( {cm} \right)}\\{\varphi = \frac{\pi }{2}{\mkern 1mu} {\mkern 1mu} \left( {rad} \right)}\end{array}} \right.\)

\( \Rightarrow x = 1\cos \left( {20t + \frac{\pi }{2}} \right){\mkern 1mu} {\mkern 1mu} \left( {cm} \right)\)

Tại thời điểm \[\frac{\pi }{{120}}{\mkern 1mu} {\mkern 1mu} s\], li độ của vật là: \[x = \cos \left( {20.\frac{\pi }{{120}} + \frac{\pi }{2}} \right) = - 0,5{\mkern 1mu} {\mkern 1mu} \left( {cm} \right) = - 0,005{\mkern 1mu} {\mkern 1mu} \left( m \right)\]

Hợp lực tác dụng lên vật có độ lớn là: \[F = \left| { - m{\omega ^2}x} \right| = \left| { - 0,{{2.20}^2}.0,005} \right| = 0,4{\mkern 1mu} {\mkern 1mu} \left( N \right)\].

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.

Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].

Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.

Lời giải

Media VietJack

Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)

Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]

Khi hạ độ cao các điểm ở các điểm  xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]

Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)

Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)

Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP