Để 26,88 gam phôi Fe ngoài không khí một thời gian, thu được hỗn hợp rắn X gồm Fe và các oxide. Hòa tan hết X trong 288 gam dung dịch \[HN{O_3}\]31,5%, thu được dung dịch Y chứa các muối và hỗn hợp khí Z gồm 2 khí, trong đó oxygen chiếm 61,11% về khối lượng. Cô cạn Y, rồi nung đến khối lượng không đổi thấy khối lượng chất rắn giảm 67,84 gam. Xác định nồng độ \[\% {\rm{ }}Fe{\left( {N{O_3}} \right)_3}\] trong Y?
Để 26,88 gam phôi Fe ngoài không khí một thời gian, thu được hỗn hợp rắn X gồm Fe và các oxide. Hòa tan hết X trong 288 gam dung dịch \[HN{O_3}\]31,5%, thu được dung dịch Y chứa các muối và hỗn hợp khí Z gồm 2 khí, trong đó oxygen chiếm 61,11% về khối lượng. Cô cạn Y, rồi nung đến khối lượng không đổi thấy khối lượng chất rắn giảm 67,84 gam. Xác định nồng độ \[\% {\rm{ }}Fe{\left( {N{O_3}} \right)_3}\] trong Y?
Quảng cáo
Trả lời:
Ta có: \[\sum {{n_{HN{O_3}}} = \frac{{288.0,315}}{{63}}} = 1,44\,\,mol;\,{n_{Fe}} = \frac{{26,88}}{{56}} = 0,48\,mol\]
Cô cạn Y thu được chất rắn khan gồm \(\left\{ \begin{array}{l}Fe{\left( {N{O_3}} \right)_2}\;\left( {a{\rm{ }}mol} \right)\\Fe{\left( {N{O_3}} \right)_3}\;\left( {b{\rm{ }}mol} \right)\end{array} \right.\)
Bảo toàn nguyên tố Fe ta có: a + b = nFe = 0,48
* Nung Y
\[\begin{array}{*{20}{l}}{2{\rm{ }}Fe{{\left( {N{O_3}} \right)}_2}\; \to {\rm{ }}F{e_2}{O_3}\; + {\rm{ }}4N{O_2}\; + {\rm{ }}\frac{1}{2}{O_2}}\\{\;a{\rm{ }}mol{\rm{ }} \to \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{ }}2a\;\;\;\;\;\;\;{\rm{ }}0,25a}\\{2{\rm{ }}Fe{{\left( {N{O_3}} \right)}_3}\; \to {\rm{ }}F{e_2}{O_3}\; + {\rm{ }}6N{O_2}\; + {\rm{ }}\frac{3}{2}{O_2}}\\{\;b{\rm{ }}mol{\rm{ }} \to \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{ }}3b\;\;\;\;\;\;\;\;{\rm{ }}0,75b}\end{array}\]
Sau khi nung đến khối lượng không đổi thì khối lượng chất rắn giảm chính là tổng khối lượng\[N{O_2}\] và \[{O_2}\] thoát ra.
Ta có hệ: \[\left\{ {\begin{array}{*{20}{l}}{a + b = 0,48}\\{46 \cdot (2a + 3b) + 32 \cdot (0,25a + 0,75b) = 67,84}\end{array}} \right. \to \left\{ {\begin{array}{*{20}{l}}{a = 0,16\,{\rm{mol}}}\\{{\rm{b}}\,{\rm{ = }}\,{\rm{0}},{\rm{32}}\,{\rm{mol}}}\end{array}} \right.\]
→ \({n_{NO_3^ - \,(Y)}} = 2a + 3b = 1,28\,mol\)
Bảo toàn nguyên tố N ta có:
\({n_{N\,(Z)}} = {n_{HN{O_3}}} - {n_{NO_3^ - \,\,(Y)}} = 1,44 - 1,28 = 0,16\,mol\)
Vì trong hỗn hợp khí Z oxygen chiếm 61,11% về khối lượng nên nitrogen chiếm 38,89% về khối lượng.
→ \({m_Z} = \frac{{{m_{N\,(Z)}}}}{{0,3889}} = \frac{{0,16.14}}{{0,3889}} = 5,76\,gam\)
→ \({n_{O\,\,(Z)}} = \frac{{5,76 \cdot 0,6111}}{{16}} = 0,22\,mol\)
\({n_{{H_2}O}} = \frac{1}{2}{n_{HN{O_3}}} = 0,72\,mol\)
Bảo toàn nguyên tố O cho quá trình hòa tan X trong \(HN{O_3}\)là:
\(\begin{array}{l}{n_{O\,\,(X)}} + 3{n_{O\,\,\,(HN{O_3})}} = 6{n_{O\,\,(Fe{{(N{O_3})}_2})}} + 9{n_{O\,\,(Fe{{(N{O_3})}_3})}} + {n_{O\,\,(Z)}} + {n_{O\,\,({H_2}O)}}\\{n_{O\,\,(X)}} + 3 \cdot 1,44 = 6 \cdot 0,16 + 9 \cdot 0,32 + 0,22 + 0,72\\ \Rightarrow {n_{O\,\,(X)}} = 0,46\,mol\\ \Rightarrow {\rm{ }}{m_{X\;}} = {\rm{ }}{m_{Fe}}\; + {\rm{ }}{m_{O\;}} = {\rm{ }}26,88{\rm{ }} + {\rm{ }}0,46.16{\rm{ }} = {\rm{ }}34,24{\rm{ }}\left( {gam} \right)\end{array}\)
Sơ đồ: X + HNO3 → Muối + Z + H2O
Áp dụng định luật bảo toàn khối lượng ta có:
\({m_{dd\,Y}} = {m_X} + {m_{dd\,HN{O_3}}} - {m_Z} = 34,24 + 288 - 5,76 = 316,48\,gam\)
Vậy \[C{\% _{Fe{{\left( {N{O_3}} \right)}_3}}} = \frac{{0,32 \cdot 242}}{{316,48}} \cdot 100\% = {\rm{ }}24,47\% \].
Chọn C.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Huyết áp giảm nhiều nhất thì hàm số \(G\left( x \right)\) đạt giá trị nhỏ nhất.
Xét hàm số \(h\left( x \right) = {x^2}\left( {15 - x} \right)\) trên \[\left( {0\,;\,\,15} \right)\], có \[h'\left( x \right) = 30x - 3{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\].
Dựa vào BBT của \(h\left( x \right)\), ta thấy \(h\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 10.\) Chọn D.
Lời giải
Chọn hệ trục toạ độ \[Oxyz\] sao cho \(O \equiv A\), tia \(Ox \equiv AD\), tia \(Oy \equiv AB.\)
Khi đó, \[A\left( {0\,;\,\,0\,;\,\,0} \right)\,;\,\,B\left( {0\,;\,\,2\,\,500\,;\,\,0} \right)\,;\,\]\[\,C\left( {1\,\,800\,;\,\,2500\,;\,\,0} \right)\,;\]\[D\left( {1500\,\,;\,\,0\,;\,\,0} \right).\]
Khi hạ độ cao các điểm ở các điểm xuống \[B,\,\,C,\,\,D\] thấp hơn so với độ cao ở \(A\) là \[10\,\,{\rm{cm}},\,\,a\,\,{\rm{cm}},\,\,6\,\,{\rm{cm}}\] tương ứng ta có các điểm mới \[B'\left( {0\,;\,\,2\,\,500\,;\,\, - 10} \right)\,;\,\,C'\left( {1800\,;\,\,2500\,;\,\, - a} \right)\,;\,\,\]\[D'\left( {1500\,;\,\,0\,;\,\, - 6} \right).\]Theo bài ra có \(A,\,\,B',\,\,C',\,\,D'\) đồng phẳng.
Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0.\)
Do \[C'\left( {1\,\,800\,;\,\,2500\,;\,\, - a} \right) \in \left( {AB'D'} \right)\] nên có \(1800 + 2500 - 250a = 0 \Rightarrow a = 17,2.\)
Vậy \(a = 17,2\;\,{\rm{cm}}.\)Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.