Đọc đoạn trích sau đây và trả lời câu hỏi:
Vũ trụ nội mạc phi phận sự,
Ông Hi Văn tài bộ đã vào lồng.
Khi Thủ khoa, khi Tham tán, khi Tổng đốc Đông,
Gồm thao lược đã nên tay ngất ngưởng.
Lúc bình Tây, cờ đại tướng,
Có khi về Phủ doãn Thừa Thiên.
(Bài ca ngất ngưởng – Nguyễn Công Trứ)
Biện pháp tu từ nào được sử dụng đế nhắc đến những chức vụ, địa vị mà ông Hi Văn đã kinh qua?
Đọc đoạn trích sau đây và trả lời câu hỏi:
Vũ trụ nội mạc phi phận sự,
Ông Hi Văn tài bộ đã vào lồng.
Khi Thủ khoa, khi Tham tán, khi Tổng đốc Đông,
Gồm thao lược đã nên tay ngất ngưởng.
Lúc bình Tây, cờ đại tướng,
Có khi về Phủ doãn Thừa Thiên.
(Bài ca ngất ngưởng – Nguyễn Công Trứ)
Biện pháp tu từ nào được sử dụng đế nhắc đến những chức vụ, địa vị mà ông Hi Văn đã kinh qua?
Quảng cáo
Trả lời:
Liệt kê: Khi Thủ khoa, khi Tham tán, khi Tổng đốc Đông,… Chọn D.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)
Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x = - \frac{d}{c}.\)
Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} = - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)
Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)
Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)
Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.
Lời giải
Ta có: \(\overrightarrow {AB} = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC} = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD} = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).
\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 = - 24\).
Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.