Câu hỏi:

24/07/2024 268 Lưu

Đọc đoạn trích sau đây và trả lời câu hỏi:

                                               Dữ dội và dịu êm

                                               Ồn ào và lặng lẽ

                                               Sông không hiểu nổi mình

                                               Sóng tìm ra tận bể.

     (Trích Sóng – Xuân Quỳnh)

Dòng nào dưới đây chứa những biện pháp tu từ xuất hiện trong đoạn thơ?

A. Liệt kê, hoán dụ, nhân hóa, đối lập. 
B. Nói quá, ẩn dụ, nhân hóa, đối lập. 
C. Liệt kê, ẩn dụ, so sánh, đối lập. 
D. Liệt kê, ẩn dụ, nhân hóa, đối lập.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Các biện pháp tu từ xuất hiện trong đoạn thơ trên là: liệt kê, ẩn dụ, nhân hóa, đối lập.

+ Liệt kê các trạng thái của sóng (dữ dội, dịu êm, ồn ào, lặng lẽ).

+ Ẩn dụ hình ảnh “sông” và “sóng” cho chủ thể trữ tình cô gái và chàng trai.

+ Nhân hóa “sông không hiểu mình” và “sóng tìm ra tận bể”.

+ Đối lập: khắc họa các trạng thái đối lập của sóng (dữ dội >< dịu êm; ồn ào >< lặng lẽ).

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{\left( {x - 3} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 3} \right)^2} = 16.\]     

B. \({\left( {x - 3} \right)^3} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 9.\)     

C. \({\left( {x + 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 3} \right)^2} = 36.\)      
D. \({\left( {x + 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 3} \right)^2} = 49.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP