Câu hỏi:

24/07/2024 174 Lưu

Đọc đoạn trích sau đây và trả lời câu hỏi:

                                               Em nghĩ về anh, em

                                               Em nghĩ về biển lớn

                                               Từ nơi nào sóng lên?

                                                Sóng bắt đầu từ gió

                                               Gió bắt đầu từ đâu?

(Sóng – Xuân Quỳnh)

Ý chính của đoạn thơ là gì?

A. Tình yêu mãi là khát vọng muôn đời. 
B. Khát vọng rạo rực của người con gái. 
C. Niềm suy tư, trăn trở của người phụ nữ trong tình yêu. 
D. Nỗi nhớ thiết tha, sâu lắng và lòng thủy chung của người phụ nữ trong tình yêu.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đoạn thơ thể hiện niềm suy tư, trăn trở của người phụ nữ trong tình yêu. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{\left( {x - 3} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z + 3} \right)^2} = 16.\]     

B. \({\left( {x - 3} \right)^3} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 9.\)     

C. \({\left( {x + 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 3} \right)^2} = 36.\)      
D. \({\left( {x + 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 3} \right)^2} = 49.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP