Câu hỏi:

24/07/2024 82

Đặt vào hai đầu đoạn mạch RLC mắc nối tiếp (cuộn dây thuần cảm, tụ điện có điện dung C thay đổi được) một điện áp xoay chiều \(u = U\sqrt 2 \cos \omega {\rm{t}}\) (V). Trong đó U và \(\omega \) không đổi. Cho C biến thiên thu được đồ thị biu diễn điện áp trên tụ theo dung kháng \({{\rm{Z}}_{\rm{C}}}\) như hình vẽ. Coi \(72,11 = 20\sqrt {13} .\) Điện trở của mạch là

Đặt vào hai đầu đoạn mạch RLC mắc nối tiếp (cuộn dây thuần cảm, tụ điện có điện dung C thay đổi được) một điện áp xoay chiều  (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hiệu điện thế giữa hai đầu tụ điện là:

\({U_C} = I.{Z_C} = \frac{{U{Z_C}}}{Z} = \frac{{U{Z_C}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \frac{{U{Z_C}}}{{\sqrt {{{\left( {{R^2} + {Z_L}} \right)}^2} - 2{Z_L}{Z_C} + {Z_C}^2} }}\)

\( \Rightarrow {U_C} = \frac{U}{{\sqrt {\left( {{R^2} + {Z_L}^2} \right)\frac{1}{{{Z_C}^2}} - 2{Z_L}\frac{1}{{{Z_C}}} + 1} }}{\mkern 1mu} {\mkern 1mu} \left( 1 \right)\)

Từ (1), ta có: \(\left( {{R^2} + {Z_L}^2} \right)\frac{1}{{{Z_C}^2}} - 2{Z_L}\frac{1}{{{Z_C}}} + 1 - {\left( {\frac{U}{{{U_C}}}} \right)^2} = 0\) (*)

Với giá trị của dung kháng \(\left\{ {\begin{array}{*{20}{l}}{{Z_{{C_1}}} = \frac{{125}}{3}{\mkern 1mu} {\mkern 1mu} \Omega }\\{{Z_{{C_2}}} = 125{\mkern 1mu} {\mkern 1mu} \Omega }\end{array}} \right.\), cho cùng 1 giá trị hiệu điện thế: \({U_{{C_1}}} = {U_{{C_2}}} = 100{\mkern 1mu} {\mkern 1mu} \left( V \right)\)

Khi \({Z_C} \to \infty \) thì \({U_C} = U = 72,11{\mkern 1mu} {\mkern 1mu} V = 20\sqrt {13} {\mkern 1mu} {\mkern 1mu} V\)\( \Rightarrow 1 - {\left( {\frac{U}{{{U_C}}}} \right)^2} = 1 - {\left( {\frac{{20\sqrt {13} }}{{100}}} \right)^2} = 0,48\)

\( \Rightarrow \left( {{R^2} + {Z_L}^2} \right)\frac{1}{{{Z_C}^2}} - 2{Z_L}\frac{1}{{{Z_C}}} + 0,48 = 0\)

Theo định lí Vi – et, đặt \[x = \frac{1}{{{Z_C}}}\] ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = \frac{{ - b}}{a}}\\{{x_1}{x_2} = \frac{c}{a}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{1}{{{Z_{{C_1}}}}} + \frac{1}{{{Z_{{C_2}}}}} = \frac{{2{Z_L}}}{{{R^2} + {Z_L}^2}}}\\{\frac{1}{{{Z_{{C_1}}}}}.\frac{1}{{{Z_{{C_2}}}}} = \frac{{0,48}}{{{R^2} + {Z_L}^2}}}\end{array}} \right.\)

\( \Rightarrow {R^2} + {Z_L}^2 = \frac{{0,48}}{{\frac{1}{{{Z_{{C_1}}}}}.\frac{1}{{{Z_{{C_2}}}}}}} = \frac{{0,48}}{{\frac{1}{{\frac{{125}}{3}}}.\frac{1}{{125}}}} = 2500\)\( \Rightarrow \frac{1}{{\frac{{125}}{3}}} + \frac{1}{{125}} = \frac{{2{Z_L}}}{{2500}} \Rightarrow {Z_L} = 40{\mkern 1mu} {\mkern 1mu} \left( \Omega \right)\)

\( \Rightarrow R = \sqrt {2500 - {{40}^2}} = 30{\mkern 1mu} {\mkern 1mu} \left( \Omega \right)\).

Đáp án: \(30\Omega \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số  Biết rằng đồ thị hàm số đã cho đi qua điểm \(\left( { - 1\,;\,\,7} \right)\) và giao điểm hai đường tiệm cận là \(\left( { - 2\,;\,\,3} \right).\) Giá trị của biểu thức \(\frac{{2a + 3b + 4c + d}}{{7c}}\) bằng\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Xem đáp án » 26/06/2024 9,099

Câu 2:

Trong không gian \[Oxyz,\] cho bốn điểm \[A\left( {1\,;\,\, - 2\,;\,\,0} \right),\,\,B\left( {2\,;\,\,0\,;\,\,3} \right),\]\[C\left( { - 2\,;\,\,1\,;\,\,3} \right),\]\[D\left( {0\,;\,\,1\,;\,\,1} \right)\]. Thể tích khối tứ diện \[ABCD\] bằng

Xem đáp án » 26/06/2024 9,009

Câu 3:

Có bao nhiêu giá trị nguyên của tham số \[m \in \left[ { - 10\,;\,\,10} \right]\] để đồ thị hàm số \(y = \frac{{x - 1}}{{2{x^2} + 6x - m - 3}}\) có hai đường tiệm cận đứng?

Xem đáp án » 13/07/2024 6,154

Câu 4:

Cho hình phẳng \((H)\) được giới hạn bởi đường cong \(y = \sqrt {{m^2} - {x^2}} \) (\(m\) là tham số khác 0) và trục hoành. Khi \((H)\) quay xung quanh trục hoành được khối tròn xoay có thể tích \[V.\] Có bao nhiêu giá trị nguyên của tham số \(m\) để \(V < 1\,\,000\pi \)?

Xem đáp án » 26/06/2024 4,499

Câu 5:

Một hội trường A của một trường Đại học có 600 chỗ ngồi và các hàng ghế được xếp theo dạng bậc thang, hàng ghế đầu tiên có 15 chỗ ngồi và cao \[0,3{\rm{ }}m\] so với mặt nền. Mỗi hàng ghế sau có thêm 3 chỗ ngồi và cao hơn \[0,2{\rm{ }}m\] so với hàng ghế ngay trước nó. Hỏi hàng ghế cuối cùng của hội trường đó sẽ cao bao nhiêu mét so với mặt nền?

Xem đáp án » 26/06/2024 4,075

Câu 6:

Trong không gian \[Oxyz,\] phương trình mặt cầu đi qua điểm \[A\left( {1\,;\,\, - 1\,;\,\,4} \right)\] và tiếp xúc với các mặt phẳng tọa độ là

Xem đáp án » 26/06/2024 3,622

Câu 7:

Cho hàm số \[f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{{e^x} + 1\quad {\rm{ khi }}x \ge 0}\\{{x^2} - 2x + 2\quad {\rm{ khi }}x < 0}\end{array}} \right..\] Biết \(I = \int\limits_{\frac{1}{e}}^{{e^2}} {\frac{{f(\ln x - 1)}}{x}{\rm{d}}x}  = \frac{a}{b} + ce\) với \(a,\,\,b,\,\,c \in \mathbb{Z}\) và \(\frac{a}{b}\) tối giản. Tính \(a + b + c.\)

Xem đáp án » 12/07/2024 3,419

Bình luận


Bình luận