Câu hỏi:

24/07/2024 145

Hỗn hợp X gồm 2 chất có công thức phân tử là \[{C_3}{H_{12}}{N_2}{O_3}\]và \[{C_2}{H_8}{N_2}{O_3}.\]Cho 3,40 gam X phản ứng vừa đủ với dung dịch NaOH (đun nóng), thu được dung dịch Y chỉ gồm các chất vô cơ và 0,04 mol hỗn hợp 2 chất hữu cơ đơn chức (đều làm xanh giấy quỳ tím ẩm). Cô cạn Y, thu được m gam muối khan. Giá trị của m là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dung dịch Y chỉ gồm các chất vô cơ 2 chất ban đầu là muối của các acid vô cơ (\[{H_2}C{O_3}\]và \[HN{O_3}\]).

Sau phản ứng thu được 2 chất hữu cơ đơn chức (đều làm xanh giấy quỳ tím ẩm) 2 chất hữu cơ này là amine.

X gồm \(\left\{ \begin{array}{l}{\left( {C{H_3}N{H_3}} \right)_2}C{O_3}\;\left( {a{\rm{ }}mol} \right)\\{C_2}{H_5}N{H_3}N{O_3}\;\left( {b{\rm{ }}mol} \right)\end{array} \right.\)

  \[{m_X}\; = {\rm{ }}124a{\rm{ }} + {\rm{ }}108b{\rm{ }} = {\rm{ }}3,4{\rm{ }}\left( 1 \right)\]

\(\)\[\begin{array}{*{20}{l}}{{{\left( {C{H_3}N{H_3}} \right)}_2}C{O_3} + {\rm{ }}2NaOH{\rm{ }} \to {\rm{ }}N{a_2}C{O_3} + {\rm{ }}2C{H_3}N{H_2} \uparrow {\rm{ }} + {\rm{ }}2{H_2}O}\\{\;\;\;\;\;\;\;\;\;\;{\rm{ }}a\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{ }} \to \;\;\;\;{\rm{ }}a\;\;\;{\rm{ }} \to \;\;\;{\rm{ }}\;\;\;\;2a{\rm{ }}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{ }}\left( {mol} \right)}\\{{C_2}{H_5}N{H_3}N{O_3} + {\rm{ }}NaOH{\rm{ }} \to {\rm{ }}NaN{O_3} + {\rm{ }}{C_2}{H_5}N{H_2} \uparrow {\rm{ }} + {\rm{ }}{H_2}O}\\{\;\;\;\;\;\;\;\;{\rm{ }}b\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{ }} \to \;\;\;\;\;{\rm{ }}b\;\;\;\;{\rm{ }} \to \;\;\;\;\;\;\;{\rm{ }}b\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{ }}\left( {mol} \right)}\end{array}\]

\[{n_{a\min e}} = {\rm{ }}2a{\rm{ }} + {\rm{ }}b{\rm{ }} = {\rm{ }}0,04{\rm{ }}\left( 2 \right)\]

Từ (1)(2) a = 0,01; b = 0,02.

Muối khan thu được sau phản ứng gồm: \[N{a_2}C{O_3}\left( {0,01{\rm{ }}mol} \right);{\rm{ }}NaN{O_3}\left( {0,02{\rm{ }}mol} \right)\]

m = 0,01.106 + 0,02.85 = 2,76 gam.

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hàm số \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,\left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{R},\,\,c \ne 0} \right).\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận ngang là \(y = \frac{a}{c}.\)

Đồ thị hàm số \(f\left( x \right)\) có đường tiệm cận đứng là \(x =  - \frac{d}{c}.\)

Theo bài ra, ta có: \(\left\{ {\begin{array}{*{20}{l}}{\frac{a}{c} = 3}\\{ - \frac{d}{c} =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 3c}\\{d = 2c}\end{array}} \right.} \right.\) (1)

Điểm \(\left( { - 1\,;\,\,7} \right)\) thuộc đồ thị hàm số \(f(x) \Rightarrow \frac{{ - a + b}}{{ - c + d}} = 7\) (2)

Từ (1) và (2) suy ra \(\frac{{ - 3c + b}}{{ - c + 2c}} = 7 \Leftrightarrow b = 10c.\)

Vậy \(\frac{{2a + 3b + 4c + d}}{{7c}} = \frac{{2 \cdot (3c) + 3 \cdot (10c) + 4c + 2c}}{{7c}} = 6.\) Chọn C.

Lời giải

Ta có: \(\overrightarrow {AB}  = \left( {1\,;\,\,2\,;\,\,3} \right)\,;\,\,\overrightarrow {AC}  = \left( { - 3\,;\,\,3\,;\,\,3} \right)\,;\,\,\overrightarrow {AD}  = \left( { - 1\,;\,\,3\,;\,\,1} \right)\).

\(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] = \left( { - 3\,;\,\, - 12\,;\,\,9} \right)\) ; \(\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD}  = \left( { - 3} \right) \cdot \left( { - 1} \right) + \left( { - 12} \right) \cdot 3 + 9 \cdot 1 =  - 24\).

Do đó \({V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} \,,\,\,\overrightarrow {AC} } \right] \cdot \overrightarrow {AD} } \right| = \frac{1}{6}\left| { - 24} \right| = 4\). Chọn D.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP