Cho đường tròn tâm O đường kính AB = 2R, bán kính OC vuông góc với AB tại O. Lấy điểm F thuộc đoạn thẳng OB, tia CF cắt đường tròn (O) tại D. Tiếp tuyến tại D của đường tròn (O) cắt AB tại E (Hình 15). Chứng minh EF = ED.

Cho đường tròn tâm O đường kính AB = 2R, bán kính OC vuông góc với AB tại O. Lấy điểm F thuộc đoạn thẳng OB, tia CF cắt đường tròn (O) tại D. Tiếp tuyến tại D của đường tròn (O) cắt AB tại E (Hình 15). Chứng minh EF = ED.

Quảng cáo
Trả lời:
Do OC = OD nên ∆OCD cân tại O, suy ra hay
Xét ∆COF vuông tại O có (tổng hai góc nhọn trong)
Lại có (đối đỉnh)
Suy ra
Mà nên
Do đó ∆EDF cân tại E, suy ra EF = ED.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do AB của đường tròn (O; R) với B là tiếp điểm nên OB ⊥ AB tại B.
Xét ∆OAB vuông tại B, theo định lí Pythagore, ta có:
OA2 = OB2 + AB2
Suy ra
Vậy
Lời giải
a) Xét ∆OCD có OC = OD nên ∆OCD cân tại O, suy ra đường trung tuyến OI của tam giác cũng đồng thời là đường cao, hay
Do AB là tiếp tuyến của đường tròn (O) với B là tiếp điểm nên OB ⊥ AB. Suy ra
Xét ∆EOB và ∆EAI có:
và là góc chung
Do đó ∆EOB ᔕ ∆EAI (g.g)
Suy ra hay EB . EA = EI . EO.
b) Gọi R là bán kính đường tròn (O).
Xét ∆OAB vuông tại B, theo định lí Pythagore, ta có: OA2 = OB2 + AB2
Suy ra AB2 = OA2 ‒ OB2 = OA2 ‒ R2.
Mặt khác, ta có: AC.AD = (AI ‒ CI)(AI + DI)
Mà CI = DI (do I là trung điểm của CD)
Suy ra: AC.AD = (AI ‒ CI)(AI + CI) = AI2 ‒ CI2
Xét ∆OAI vuông tại I, theo định lí Pythagore, ta có: OA2 = OI2 + AI2
Suy ra AI2 = OA2 ‒ OI2.
Xét ∆OCI vuông tại I, theo định lí Pythagore, ta có: OC2 = OI2 + CI2
Suy ra CI2 = OC2 ‒ OI2.
Do đó AC.AD = (OA2 ‒ OI2) ‒ (OC2 ‒ OI2)
= OA2 ‒ OI2 ‒ OC2 + OI2
= OA2 – OC2 = OA2 ‒ R2.
Do đó AB2 = AC. AD (vì cùng bằng OA2 ‒ R2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


