Cho đường tròn (O; 4 cm) và đường thẳng d sao cho khoảng cách từ điểm O đến đường thẳng d là OH = 5 cm. Đường thẳng OH cắt đường tròn (O) tại A. Gọi B là trung điểm của đoạn thẳng OA. Trên đường thẳng d, lấy một điểm I (khác H), kẻ tiếp tuyến IC của đường tròn (O) với C là tiếp điểm (Hình 17). Chứng minh tam giác IBC cân tại I.

Cho đường tròn (O; 4 cm) và đường thẳng d sao cho khoảng cách từ điểm O đến đường thẳng d là OH = 5 cm. Đường thẳng OH cắt đường tròn (O) tại A. Gọi B là trung điểm của đoạn thẳng OA. Trên đường thẳng d, lấy một điểm I (khác H), kẻ tiếp tuyến IC của đường tròn (O) với C là tiếp điểm (Hình 17). Chứng minh tam giác IBC cân tại I.
Quảng cáo
Trả lời:
Do B là trung điểm của OA nên
Ta có:
Do OH là khoảng cách từ O đến đường thẳng d nên OH ⊥ d tại H.
Xét ∆IBH vuông tại H, theo định lí Pythagore, ta có:
IB2 = IH2 + BH2 = IH2 + 32 = IH2 + 9.
Xét ∆OIH vuông tại H, theo định lí Pythagore, ta có: OI2 = OH2 + IH2.
Do tiếp tuyến IC của đường tròn (O) với C là tiếp điểm nên OC ⊥ IC tại C.
Xét ∆ICO vuông tại C, theo định lí Pythagore, ta có: IO2 = IC2 + OC2.
Suy ra IC2 = IO2 ‒ OC2 = (OH2 + IH2) ‒ OC2 = (52 + IH2) ‒ 42 = IH2 + 9.
Do đó IB2 = IC2 (vì cùng bằng IH2 + 9).
Vậy IB = IC hay tam giác IBC cân tại I.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do OC = OD nên ∆OCD cân tại O, suy ra hay
Xét ∆COF vuông tại O có (tổng hai góc nhọn trong)
Lại có (đối đỉnh)
Suy ra
Mà nên
Do đó ∆EDF cân tại E, suy ra EF = ED.
Lời giải
Do AB của đường tròn (O; R) với B là tiếp điểm nên OB ⊥ AB tại B.
Xét ∆OAB vuông tại B, theo định lí Pythagore, ta có:
OA2 = OB2 + AB2
Suy ra
Vậy
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.