Câu hỏi:

02/08/2024 1,546

Trong 20 giây, bánh xe của một chiếc xe máy quay được 80 vòng. Độ dài bán kính của bánh xe đó là 25 cm. Khi đó, quãng đường xe máy đi được trong 3 phút là:

A. 36 000π m.

B. 360π m.

C. 18 000π m.

D. 180π m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Đổi 3 phút = 180 giây.

Chu vi của bánh xe máy là: 2π.25 = 50π (cm).

Quãng đường xe máy đi được trong 20 giây là:

80 . 50π = 4 000π (cm) = 40π (m).

Quãng đường xe máy đi được trong 3 phút (180 giây) là: 40π20180=360π  (m).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Media VietJack

Gọi E là giao điểm của MN và OO’.

Ta có: OM = ON = R (bán kính đường tròn (O; R)) và O’M = O’N = R (bán kính đường tròn (O’; R)). Suy ra OM = ON = O’M = O’N, nên OMO’N là hình thoi.

Do đó hai đường chéo MN và OO’ vuông góc với nhau tại trung điểm E của mỗi đường.

Suy ra OE=12=1224=12  cm  và ME=12MN=1210=5  cm.

Xét ∆OME vuông tại E, theo định lí Pythagore, ta có:

OM2 = OE2 + ME2

Suy ra OM=OE2+ME2=122+52=169=13  cm.

Vậy R = 13 cm.

Lời giải

Media VietJack

a) Do AC, AH là hai tiếp tuyến của đường tròn (M) nên AC = AH.

Tương tự, ta chứng minh được BD = BH.

Do đó AC + BD = AH + BH = AB (không đổi).

b) Do AC, AH là hai tiếp tuyến của đường tròn (M) nên MA là tia phân giác của góc CMH hay AMC^=AMH^.

Tương tự, ta chứng minh được  BMD^=BMH^.

Xét đường tròn (O) đường kính AB có AMB^=90°  (góc nội tiếp chắn nửa đường tròn).

Mà AMH^+BMH^=AMB^=90°

Suy ra CMD^=AMC^+AMH^+BMH^+BMD^=2AMH^+BMH^=290°=180°

Do đó ba điểm C, M, D thẳng hàng.

Do tam giác OBM cân tại O (do OM = OB) nên OBM^=OMB^.

Suy ra 2OBM^+BOM^=180°.

Ta lại có: AOM^+BOM^=180°  nên AOM^=2OBM^. 

Lại có BM là tia phân giác của góc ABD (do hai tiếp tuyến BD, BH của (O) cắt nhau tại B) hayABD^=2OBM^.

Suy ra  AOM^=ABD^.

Mà hai góc này ở vị trí đồng vị nên OM // BD.

Mặt khác, BD CD (do BD CM) nên CD vuông góc với OM tại M thuộc đường tròn (O).

Vậy CD là tiếp tuyến của đường tròn (O).