Câu hỏi:

19/08/2025 284 Lưu

Trong thí nghiệm Y-âng, chiếu đồng thời hai bức xạ có bước sóng \({\lambda _1} = 0,45\mu m\)\({\lambda _2} = 0,63\,\mu m.\) Trên màn quan sát, gọi M, N là hai điểm nằm cùng một phía so với vân trung tâm. Biết tại điểm M trùng với vị trí vân sáng bậc 5 của bức xạ \({\lambda _2}\), tại điểm N trùng với vị trí vân sáng bậc 14 của bức xạ \({\lambda _1}\). Tính số vân sáng quan sát được trên khoảng MN (không kể M, N) ?

Đáp án: ……….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tại vị trí trùng nhau của hai vân sáng ta có: \({k_1}{\lambda _1} = {k_2}{\lambda _2} \Rightarrow \frac{{{k_1}}}{{{k_2}}} = \frac{{{\lambda _2}}}{{{\lambda _1}}} = \frac{7}{5} = \frac{{14}}{{10}}\)

Tại điểm M trùng với vị trí vân sáng bậc 5 của bức xạ \({\lambda _2}\) và bậc 7 của \({\lambda _1}\)

Tại điểm N trùng với vị trí vân sáng bậc 10 của bức xạ \({\lambda _2}\) và bậc 14 của \({\lambda _1}\)

Trong khoảng từ M đến N có 2 vị trí vân sáng trùng nhau đó là tại M và N

- Từ M đến N có 14 – 7 – 1 = 6 vân sáng của riêng bức xạ \({\lambda _1}\)

- Từ M đến N có 10 – 5 – 1 = 4 vân sáng của riêng bức xạ \({\lambda _2}\)

Trong khoảng từ M đến N quan sát được 10 vân sáng (không kể M, N).

Đáp án: 10

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận lớn nhất.

Gọi \(F\left( x \right)\) là hàm chỉ số tiền thu được sau mỗi chuyến xe \(\left( {0 < x \le 60\,,\,\,x \in \mathbb{N}} \right).\)

Số tiền thu được sau mỗi chuyến xe:

\(F\left( x \right) = {\left( {300 - \frac{{5x}}{2}} \right)^2} \cdot x = 90\,\,000x - 1500{x^2} + \frac{{25}}{4}{x^3}\).

Bài toán trở thành tìm \(x\) để \(F(x)\) đạt giá trị lớn nhất thì \(F'\left( x \right) = 90\,\,000 - 3\,\,000x + \frac{{75}}{4}{x^2}\)

\(F'\left( x \right) = 0 \Leftrightarrow 90\,\,000 - 3\,\,000x + \frac{{75}}{4}{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 120}&{(L)}\\{x = 40}&{(TM)}\end{array}.} \right.\)

Bảng biến thiên:

Media VietJack

Vậy để thu được lợi nhuận của mỗi chuyến xe là lớn nhất thì mỗi chuyến xe phải chở 40 người.

Câu 2

A. \(A'\left( {2\,;\,\,3\,;\,\,5} \right).\)                
B. \(A'\left( {2\,;\,\, - 3\,;\,\, - 5} \right).\)           
C. \(A'\left( { - 2\,;\,\, - 3\,;\,\,5} \right).\)     
D. \(A'\left( { - 2\,;\,\, - 3\,;\,\, - 5} \right).\)

Lời giải

Gọi \(H\) là hình chiếu vuông góc của \(A\left( {2\,;\,\, - 3\,;\,\,5} \right)\) lên \[Oy.\]

Suy ra \(H\left( {0\,;\,\, - 3\,;\,\,0} \right).\) Khi đó \(H\) là trung điểm đoạn \(AA'.\)

Do đó \[\left\{ {\begin{array}{*{20}{l}}{{x_H} = \frac{{{x_A} + {x_{A'}}}}{2}}\\{{y_H} = \frac{{{y_A} + {y_{A'}}}}{2}}\\{{z_H} = \frac{{{z_A} + {z_{A'}}}}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_{A'}} = 2{x_H} - {x_A} = 2 \cdot 0 - 2 =  - 2}\\{{y_{A'}} = 2{y_H} - {y_A} = 2 \cdot \left( { - 3} \right) - ( - 3) =  - 3}\\{{z_{A'}} = 2{z_H} - {z_A} = 2 \cdot 0 - 5 =  - 5}\end{array}} \right.} \right.\].

\[ \Rightarrow A'\left( { - 2\,;\,\, - 3\,;\,\, - 5} \right).\] Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Lao động có kĩ thuật cao. 
B. Cơ sở vật chất kĩ thuật tốt. 
C. Giao thông vận tải phát triển.
D. Thị trường tiêu thụ rộng lớn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left[ { - \frac{1}{3}; + \infty } \right).\)    
B. \(\left( { - \frac{1}{3}; + \infty } \right).\)   
C. \(\left( { - \infty ; - \frac{1}{3}} \right).\)   
D. \(\left[ { - \frac{1}{3};0} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP