Câu hỏi:
07/08/2024 207
Một lọ đựng dung dịch \({\rm{FeS}}{{\rm{O}}_4}\)(dung dịch X) để lâu ngày thì thấy màu của dung dịch chuyển sang màu vàng nâu.
Để xác định nồng độ ban đầu của \({\rm{FeS}}{{\rm{O}}_4}\), tiến hành như sau:
Thí nghiệm 1: thêm dung dịch \({\rm{NaOH}}\) từ từ tới dư vào \(50,00\;{\rm{mL}}\) dung dịch X thấy xuất hiện kết tủa, lọc kết tủa, làm khô cẩn thận thu được 4,67 g kết tủa.
Thí nghiệm 2: thêm từ từ dung dịch \({\rm{KMn}}{{\rm{O}}_4}0,50{\rm{M}}\) trong môi trường \({{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}\) vào \(50,00\;{\rm{mL}}\) dung dịch X, sau phản ứng thấy dùng hết \(16,00\;{\rm{mL}}\) dung dịch \({\rm{KMn}}{{\rm{O}}_4}.\)
Nồng độ ban đầu của \({\rm{FeS}}{{\rm{O}}_4}\) là
Một lọ đựng dung dịch \({\rm{FeS}}{{\rm{O}}_4}\)(dung dịch X) để lâu ngày thì thấy màu của dung dịch chuyển sang màu vàng nâu.
Để xác định nồng độ ban đầu của \({\rm{FeS}}{{\rm{O}}_4}\), tiến hành như sau:
Thí nghiệm 1: thêm dung dịch \({\rm{NaOH}}\) từ từ tới dư vào \(50,00\;{\rm{mL}}\) dung dịch X thấy xuất hiện kết tủa, lọc kết tủa, làm khô cẩn thận thu được 4,67 g kết tủa.
Thí nghiệm 2: thêm từ từ dung dịch \({\rm{KMn}}{{\rm{O}}_4}0,50{\rm{M}}\) trong môi trường \({{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}\) vào \(50,00\;{\rm{mL}}\) dung dịch X, sau phản ứng thấy dùng hết \(16,00\;{\rm{mL}}\) dung dịch \({\rm{KMn}}{{\rm{O}}_4}.\)
Nồng độ ban đầu của \({\rm{FeS}}{{\rm{O}}_4}\) là
Quảng cáo
Trả lời:
Phân tích bài toán như sau:
Tại TN1: Kết tủa gồm \({\rm{Fe}}{({\rm{OH}})_2}\) và \({\rm{Fe}}{({\rm{OH}})_3}\)
\({\rm{FeS}}{{\rm{O}}_4} + 2{\rm{NaOH}} \to {\rm{Fe}}{({\rm{OH}})_2} \downarrow + {\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4}\)
\({\rm{F}}{{\rm{e}}_2}{\left( {{\rm{S}}{{\rm{O}}_4}} \right)_3} + 6{\rm{NaOH}} \to 2{\rm{Fe}}{({\rm{OH}})_3} \downarrow + 3{\rm{N}}{{\rm{a}}_2}{\rm{S}}{{\rm{O}}_4}\)
Tại TN2: Chỉ có muối sắt (II) mới làm mất màu dung dịch \({\rm{KMn}}{{\rm{O}}_4}\) trong môi trường \({{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4}.\)
\({n_{{\rm{KMn}}{{\rm{O}}_4}}} = 0,5 \cdot \frac{{16}}{{1000}} = {8.10^{ - 3}}\;{\rm{mol}}\)
Phương trình hóa học:
\(\begin{array}{l}10{\rm{FeS}}{{\rm{O}}_4} + 2{\rm{KMn}}{{\rm{O}}_4} + 8{{\rm{H}}_2}{\rm{S}}{{\rm{O}}_4} \to 5{\rm{F}}{{\rm{e}}_2}{\left( {{\rm{S}}{{\rm{O}}_4}} \right)_3} + {{\rm{K}}_2}{\rm{S}}{{\rm{O}}_4} + 2{\rm{MnS}}{{\rm{O}}_4} + 8{{\rm{H}}_2}{\rm{O}}\\0,04\,\,\,\, \leftarrow {8.10^{ - 3}}\;{\rm{mol}}\end{array}\)
Þ \({{\rm{n}}_{{\rm{FeS}}{{\rm{O}}_4}}} = 0,04\) mol \( \Rightarrow {n_{Fe{{(OH)}_2}\,\,(TN1)}} = {n_{FeS{O_4}}} = 0,04\,mol\)
Ở TN1, thu được 4,67 gam kết tủa nên ta có:
4,67 = 0,04.90 + \({n_{Fe{{(OH)}_3}}} \cdot 107 \Rightarrow {n_{Fe{{(OH)}_3}}} = 0,01\,mol\)
Bảo toàn nguyên tố \(({\rm{Fe}})\) ta có:

Nồng độ ban đầu của \({\rm{FeS}}{{\rm{O}}_4}\) là \( = \frac{{0,05}}{{0,05}} = 1M\)
Chọn C.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) là số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận lớn nhất.
Gọi \(F\left( x \right)\) là hàm chỉ số tiền thu được sau mỗi chuyến xe \(\left( {0 < x \le 60\,,\,\,x \in \mathbb{N}} \right).\)
Số tiền thu được sau mỗi chuyến xe:
\(F\left( x \right) = {\left( {300 - \frac{{5x}}{2}} \right)^2} \cdot x = 90\,\,000x - 1500{x^2} + \frac{{25}}{4}{x^3}\).
Bài toán trở thành tìm \(x\) để \(F(x)\) đạt giá trị lớn nhất thì \(F'\left( x \right) = 90\,\,000 - 3\,\,000x + \frac{{75}}{4}{x^2}\)
\(F'\left( x \right) = 0 \Leftrightarrow 90\,\,000 - 3\,\,000x + \frac{{75}}{4}{x^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 120}&{(L)}\\{x = 40}&{(TM)}\end{array}.} \right.\)
Bảng biến thiên:
Vậy để thu được lợi nhuận của mỗi chuyến xe là lớn nhất thì mỗi chuyến xe phải chở 40 người.
Lời giải
Gọi \(H\) là hình chiếu vuông góc của \(A\left( {2\,;\,\, - 3\,;\,\,5} \right)\) lên \[Oy.\]
Suy ra \(H\left( {0\,;\,\, - 3\,;\,\,0} \right).\) Khi đó \(H\) là trung điểm đoạn \(AA'.\)
Do đó \[\left\{ {\begin{array}{*{20}{l}}{{x_H} = \frac{{{x_A} + {x_{A'}}}}{2}}\\{{y_H} = \frac{{{y_A} + {y_{A'}}}}{2}}\\{{z_H} = \frac{{{z_A} + {z_{A'}}}}{2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_{A'}} = 2{x_H} - {x_A} = 2 \cdot 0 - 2 = - 2}\\{{y_{A'}} = 2{y_H} - {y_A} = 2 \cdot \left( { - 3} \right) - ( - 3) = - 3}\\{{z_{A'}} = 2{z_H} - {z_A} = 2 \cdot 0 - 5 = - 5}\end{array}} \right.} \right.\].
\[ \Rightarrow A'\left( { - 2\,;\,\, - 3\,;\,\, - 5} \right).\] Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.