Câu hỏi:
07/08/2024 66Cho biết bệnh bạch tạng do gen lặn nằm trên nhiễm sắc thể thường quy định, bệnh mù màu do gen lặn nằm trên nhiễm sắc thể giới tính X quy định. Ở một cặp vợ chồng đều không bị hai bệnh này, bên phía người vợ có ông ngoại bị mù màu, mẹ của cô ta bị bạch tạng. Bên phía người chồng có ông nội và mẹ bị bạch tạng. Những người khác trong hai dòng họ này đều không bị hai bệnh nói trên. Cặp vợ chồng này dự định sinh hai đứa con, xác suất để cả hai đứa con của họ đều không bị hai bệnh nói trên là bao nhiêu? (làm tròn đến số thập phân thứ 3)
Đáp án: ……….
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
- Quy ước: gen A bình thường >> a bạch tạng; gen B bình thường >> b bị bệnh mù màu.
- Xét tính trạng bạch tạng:
Người vợ bình thường nhưng mẹ bị bạch tạng (aa) → Người vợ có kiểu gen là Aa.
Người chồng bình thường nhưng mẹ bị bạch tạng (aa) → Người chồng có kiểu gen là Aa.
P: Aa × Aa → Xác suất sinh 2 con không bị bệnh bạch tạng của cặp vợ chồng này là:
\(1 \times 1 \times {\left( {\frac{3}{4}} \right)^2} = \frac{9}{{16}}\)
- Xét tính trạng mù màu:
Ông ngoại của người vợ bị mù màu (XbY) → Mẹ của người vợ có kiểu hình bình thường sẽ có kiểu gen là \({X^B}{X^b}\), bố của người vợ bình thường có kiểu gen là \({X^B}Y\) → Người vợ có xác suất về kiểu gen là: \(\left( {\frac{1}{2}{X^B}{X^B}:\frac{1}{2}{X^B}{X^b}} \right)\).
Người chồng bình thường có kiểu gen là\({X^B}Y\).
P: \(\left( {\frac{1}{2}{X^B}{X^B}:\frac{1}{2}{X^B}{X^b}} \right)\)×\({X^B}Y\)
TH1: Nếu người vợ có kiểu gen là \({X^B}{X^B}\) thì xác suất sinh 2 con không bị bệnh mù màu là:
\(\frac{1}{2} \times 1 \times {1^2} = \frac{1}{2}\)
TH2: Nếu người vợ có kiểu gen là \({X^B}{X^b}\) thì xác suất sinh 2 con không bị bệnh mù màu là:
\(\frac{1}{2} \times 1 \times {\left( {1 - \frac{1}{4}} \right)^2} = \frac{9}{{32}}\)
→ Xác suất sinh 2 con không bị bệnh mù màu của cặp vợ chồng này là: \(\frac{1}{2} + \frac{9}{{32}} = \frac{{25}}{{32}}\)
Vậy xác suất để cặp vợ chồng này sinh 2 đứa con không bị cả 2 bệnh là:
\(\frac{9}{{16}} \times \frac{{25}}{{32}} = \frac{{225}}{{512}} = 0,439.\)
Đáp án: 0,439
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một xe khách đi từ Việt Trì về Hà Nội chở tối đa 60 hành khách một chuyến. Nếu một chuyến chở được \(m\) hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận của mỗi chuyến xe là lớn nhất.
Câu 2:
Trong không gian \[Oxyz,\] cho điểm \(A\left( {2\,;\,\, - 3\,;\,\,5} \right).\) Điểm \[A'\] đối xứng với điểm \[A\] qua trục Oy. Tọa độ điểm \[A'\] là
Câu 3:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc đoạn \(\left[ { - 1\,;\,\,2} \right]?\)
Câu 4:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left( {x + 1} \right)\left( {x - 3} \right) + \sqrt {8 + 2x - {x^2}} = 2m\) có nghiệm?
Câu 5:
Tập hợp các giá trị của \(m\) để hàm số \(y = - m{x^3} + {x^2} - 3x + m - 2\) nghịch biến trên khoảng \[\left( { - 3\,;\,\,0} \right)\] là
Câu 6:
Câu 7:
Đọc đoạn trích sau và trả lời câu hỏi:
Hắn vừa đi vừa chửi. Bao giờ cũng thế, cứ rượu xong là hắn chửi. Bắt đầu hắn chửi trời. Có hề gì? Trời có của riêng nhà nào? Rồi hắn chửi đời. Thế cũng chẳng sao: đời là tất cả nhưng chẳng là ai. Tức mình, hắn chửi ngay tất cả làng Vũ Đại. Nhưng cả làng Vũ Đại ai cũng nhủ: “Chắc nó trừ mình ra!”. Không ai lên tiếng cả. Tức thật! Ờ! Thế này thì tức thật! Tức chết đi được mất! Đã thế, hắn phải chửi cha đứa nào không chửi nhau với hắn. Nhưng cũng không ai ra điều. Mẹ kiếp! Thế có phí rượu không? Thế thì có khổ hắn không? Không biết đứa chết mẹ nào lại đẻ ra thân hắn cho hắn khổ đến nông nỗi này? A ha! Phải đấy hắn cứ thế mà chửi, hắn cứ chửi đứa chết mẹ nào đẻ ra thân hắn, đẻ ra cái thằng Chí Phèo! Hắn nghiến răng vào mà chửi cái đứa đã đẻ ra Chí Phèo. Nhưng mà biết đứa nào đã đẻ ra Chí Phèo? Có mà trời biết! Hắn không biết, cả làng Vũ Đại cũng không ai biết...
(Chí Phèo – Nam Cao)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Nghĩa của từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Câu hỏi điền từ
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
về câu hỏi!