Trong không gian Oxyz, cho ba điểm A(2; 0; 0), B(0; −3; 0), C(0; 0; 1). Viết phương trình mặt phẳng (ABC).
Trong không gian Oxyz, cho ba điểm A(2; 0; 0), B(0; −3; 0), C(0; 0; 1). Viết phương trình mặt phẳng (ABC).
Quảng cáo
Trả lời:

Ta có: A(2; 0; 0), B(0; −3; 0), C(0; 0; 1) nên phương trình mặt phẳng (ABC) viết theo phương trình mặt phẳng đoạn chắn là: \(\frac{x}{2} + \frac{y}{{ - 3}} + \frac{z}{1} = 1\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có khoảng cách từ điểm A đến mặt phẳng (Oxy) là h = d(A, (Oxy) = 1.
Bán kính đường tròn là giao tuyến của mặt cầu tâm A, bán kính bằng R = 2 với mặt phẳng (Oxy) là r = \(\sqrt {{R^2} - {1^2}} = \sqrt 3 \).
Vậy bán kính vùng phủ sóng trên mặt phẳng (Oxy) bằng \(\sqrt 3 \).
Lời giải
Ta có: \(\overrightarrow {AB} \) = (1; 1; 3), \(\overrightarrow {AC} \) = (2; 2; 4).
\(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\) = \(\left( {\left| {\begin{array}{*{20}{c}}1&3\\2&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&1\\4&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\2&2\end{array}} \right|} \right)\) = (−2; 2; 0) = −2(1; −1; 0).
\(\overrightarrow n \) = (1; −1; 0) chính là vectơ pháp tuyến của mặt phẳng (ABC).
Phương trình mặt phẳng (ABC) là:
1(x – 1) – 1(y – 0) + 0(z + 3) = 0 hay x – y – 1 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.