Câu hỏi:

21/08/2024 3,461 Lưu

Trong không gian Oxyz, sàn của một căn phòng thuộc mặt phẳng (α): x + 2y + 2z – 1 = 0 và trần của căn phòng đó thuộc mặt phẳng (β): x + 2y + 2z – 3 = 0. Hỏi chiều cao của căn phòng đó có đủ để kê một chiếc tủ có chiều cao bằng 1 hay không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: phương trình mặt phẳng chứa mặt sàn căn phòng: x + 2y + 2z – 1 = 0.

Phương trình mặt phẳng chứa trần căn phòng là: x + 2y + 2z – 3 = 0.

Lấy điểm M(3; 0; 0) thuộc mặt phẳng trần căn phòng.

Khoảng cách giữa mặt sàn và trần căn phòng là: d = \(\frac{{\left| {3 - 1} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }}\)= \(\frac{2}{3}\) < 1 nên không thể kê được chiếc tủ có chiều cao bằng 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có khoảng cách từ điểm A đến mặt phẳng (Oxy) là h = d(A, (Oxy) = 1.

Bán kính đường tròn là giao tuyến của mặt cầu tâm A, bán kính bằng R = 2 với mặt phẳng (Oxy) là r = \(\sqrt {{R^2} - {1^2}} = \sqrt 3 \).

Vậy bán kính vùng phủ sóng trên mặt phẳng (Oxy) bằng \(\sqrt 3 \).

Lời giải

Ta có: \(\overrightarrow {AB} \) = (1; 1; 3), \(\overrightarrow {AC} \) = (2; 2; 4).

\(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\) = \(\left( {\left| {\begin{array}{*{20}{c}}1&3\\2&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&1\\4&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\2&2\end{array}} \right|} \right)\) = (−2; 2; 0) = −2(1; −1; 0).

\(\overrightarrow n \) = (1; −1; 0) chính là vectơ pháp tuyến của mặt phẳng (ABC).

Phương trình mặt phẳng (ABC) là:

1(x – 1) – 1(y – 0) + 0(z + 3) = 0 hay x – y – 1 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP