Câu hỏi:

21/08/2024 2,105

Trong không gian Oxyz, cho điểm H(3; 2; 4).

a) Viết phương trình mặt phẳng (P) chứa điểm H và trục Oy.

b) Viết phương trình mặt phẳng (Q) đi qua điểm H và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C (với A, B, C đều không trùng khớp với gốc tọa độ O) sao cho H là trực tâm tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: \(\overrightarrow {OH} \) = (3; 2; 4), \(\overrightarrow j \) = (0; 1; 0) (\(\overrightarrow j \) là vectơ chỉ phương của Oy).

Vì mặt phẳng (P) chứa điểm H và trục Oy nên

\(\overrightarrow {{n_P}} = \left[ {\overrightarrow {OH} ,\overrightarrow j } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&4\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&3\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&2\\0&1\end{array}} \right|} \right)\) = (−4; 0; 3).

Vậy phương trình mặt phẳng (P) là:

−4(x – 0) + 0(y – 0) +3(z – 0) = 0

−4x + 3z = 0.

b) Do H là trực tâm tam giác ABC nên OH (ABC)

\(\overrightarrow {OH} \) = (3; 2; 4) là một vectơ pháp tuyến của mặt phẳng (ABC). Phương trình mặt phẳng (ABC) là:

3(x – 3) + 2(y – 2) + 4(z – 4) = 0

3x + 2y + 4z – 29 = 0.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có khoảng cách từ điểm A đến mặt phẳng (Oxy) là h = d(A, (Oxy) = 1.

Bán kính đường tròn là giao tuyến của mặt cầu tâm A, bán kính bằng R = 2 với mặt phẳng (Oxy) là r = \(\sqrt {{R^2} - {1^2}} = \sqrt 3 \).

Vậy bán kính vùng phủ sóng trên mặt phẳng (Oxy) bằng \(\sqrt 3 \).

Lời giải

Ta có: A(2; 0; 0), B(0; −3; 0), C(0; 0; 1) nên phương trình mặt phẳng (ABC) viết theo phương trình mặt phẳng đoạn chắn là: \(\frac{x}{2} + \frac{y}{{ - 3}} + \frac{z}{1} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay