Câu hỏi:

21/08/2024 170

Trong không gian Oxyz, cho hai điểm A(2; −1; 0), B(3; 1; 2) và mặt phẳng (α): x + 2y + 3z – 1 = 0.

a) Viết phương trình mặt phẳng (β) chứa A, B và song song với (α).

b) Viết phương trình mặt phẳng (P) chứa A, B và song song với trục Ox.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: \(\overrightarrow {{n_\alpha }} \) = (1; 2; 3), \(\overrightarrow {AB} \) = (1; 2; 2).

Do đó, \(\overrightarrow {{n_\beta }} = \left[ {\overrightarrow {{n_\alpha }} ,\overrightarrow {AB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&3\\2&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&1\\2&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\1&2\end{array}} \right|} \right)\) = (−2; 1; 0).

Vậy phương trình mặt phẳng (β) là:

−2(x – 2) + 1(y + 1) + 0(z – 0) = 0

−2x + y + 5 = 0 hay 2x – y – 5 = 0.

b) Ta có: \(\overrightarrow {AB} \) = (1; 2; 2), \(\overrightarrow i \) = (1; 0; 0) (\(\overrightarrow i \) là vectơ chỉ phương của Ox).

Do mặt phẳng (P) chứa A, B và (P) Ox nên mặt phẳng (P) có vectơ pháp tuyến là \(\overrightarrow {{n_P}} = \left[ {\overrightarrow {AB} ,\overrightarrow i } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&2\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\1&0\end{array}} \right|} \right)\) = (0; 2; −2) = 2(0; 1; −1).

Phương trình mặt phẳng (P) là:

0(x – 2) + 1(y + 1) – 1(z – 0) = 0 y – z + 1 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, một máy phát sóng đặt tại vị trí A(1; 2; 1) và có bán kính phủ sóng là 2. Hỏi vùng phủ sóng trên mặt phẳng (Oxy) có bán kính bằng bao nhiêu?

Xem đáp án » 21/08/2024 1,142

Câu 2:

Trong không gian Oxyz, cho ba điểm A(1; 0; −3), B(2; 1; 0), C(3; 2; 1). Viết phương trình mặt phẳng (ABC).

Xem đáp án » 21/08/2024 428

Câu 3:

Trong không gian Oxyz, cho ba điểm A(2; 0; 0), B(0; −3; 0), C(0; 0; 1). Viết phương trình mặt phẳng (ABC).

Xem đáp án » 21/08/2024 375

Câu 4:

Trong không gian Oxyz, cho điểm H(3; 2; 4).

a) Viết phương trình mặt phẳng (P) chứa điểm H và trục Oy.

b) Viết phương trình mặt phẳng (Q) đi qua điểm H và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C (với A, B, C đều không trùng khớp với gốc tọa độ O) sao cho H là trực tâm tam giác ABC.

Xem đáp án » 21/08/2024 233

Câu 5:

Trong không gian Oxyz, sàn của một căn phòng thuộc mặt phẳng (α): x + 2y + 2z – 1 = 0 và trần của căn phòng đó thuộc mặt phẳng (β): x + 2y + 2z – 3 = 0. Hỏi chiều cao của căn phòng đó có đủ để kê một chiếc tủ có chiều cao bằng 1 hay không?

Xem đáp án » 21/08/2024 149

Câu 6:

Trong không gian Oxyz, cho mặt phẳng (α): x – 2y – 2z + 9 = 0 và điểm A(2; −1; 3).

a) Tính khoảng cách từ A đến mặt phẳng (α).

b) Viết phương trình mặt phẳng (β) đi qua A và song song với (α).

Xem đáp án » 21/08/2024 115

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store